

Module Handbook Information Systems M.Sc.

SPO 2019 Summer term 2021 Date: 09/04/2021

KIT DEPARTMENT OF ECONOMICS AND MANAGEMENT / KIT DEPARTMENT OF INFORMATICS

KIT - The Research University in the Helmholtz Association

www.kit.edu

Table Of Contents

1. General information	
1.1. Structural elements	
1.2. Begin and completion of a module	14
1.3. Module versions	14
1.4. General and partial examinations	14
1.5. Types of exams	
1.6. Repeating exams	
1.7. Examiners	
1.8. Additional accomplishments	15
1.9. Further information	15
1.10. Contact persons	
2. Study plan	
3. Qualification goals	
4. Field of study structure	
4.1. Master Thesis	
4.2. Information Systems	
4.3. Informatics	
4.4. Economics and Management	
4.5. Law	
4.6. Seminars	
5. Modules	
5.1. Access Control Systems Lab - M-INFO-104164	
5.2. Access Control Systems: Foundations and Practice - M-INFO-103046	
5.3. Accessibility - Assistive Technologies for Visually Impaired Persons - M-INFO-100764	
5.4. Advanced Data Structures - M-INFO-102731	
5.5. Advanced Machine Learning and Data Science - M-WIWI-105659	
5.6. Advanced Topics in Public Finance - M-WIWI-101511	
5.7. Advanced Topics in Strategy and Management - M-WIWI-103119	
5.8. Algorithm Engineering - M-INFO-100795	
5.9. Algorithmic Graph Theory - M-INFO-100762	
5.10. Algorithmic Methods for Network Analysis - M-INFO-102400	
5.10. Algorithms for Ad-Hoc and Sensor Networks - M-INFO-102400	
5.11. Algorithms for Routing - M-INFO-100031	
5.12. Algorithms for Visualization of Graphs - M-INFO-102094	
5.14. Algorithms II - M-INFO-101173	
5.15. Algorithms in Cellular Automata - M-INFO-100797	
5.16. Analytics and Statistics - M-WIWI-101637	
5.17. Application Security Lab - M-INFO-103166	
5.17. Applied Differential Geometry - M-INFO-102226	
5.19. Applied Strategic Decisions - M-WIWI-101453	
5.20. Artificial Intelligence - M-WIWI-105366	
5.20. Automated Planning and Scheduling - M-INFO-104447	
5.22. Automated Visual Inspection and Image Processing - M-INFO-100826	
5.22. Automated Visual inspection and image Processing - M-INFO-100020	
5.24. Big Data Analytics - M-INFO-102773	
5.25. Biologically Inspired Robots - M-INFO-100814	
5.26. Biometric Systems for Person Identification - M-INFO-102968	
5.27. Business & Service Engineering - M-WIWI-101410	
5.27. Dusitices & Schride Englineering 14 WWW 101410	
5.29. Collective Decision Making - M-WIWI-101504	
5.30. Computational Cartography - M-INFO-100754	
5.31. Computational Complexity Theory, with a View Towards Cryptography - M-INFO-101575	
5.31. Computational Complexity Theory, with a view Towards Cryptography - M-INFO-101373	
5.32. Computer Architecture - M-INFO-102110	
5.34. Computer Graphics - M-INFO-100856	
5.35. Computer Vision for Human-Computer Interaction - M-INFO-100810	
5.36. Context Sensitive Systems - M-INFO-100728	
······································	

5.37. Critical Digital Infrastructures - M-WIWI-104403	
5.38. Cross-Functional Management Accounting - M-WIWI-101510	
5.39. Cryptographic Voting Schemes - M-INFO-100742	
5.40. Curves and Surfaces for Geometric Design - M-INFO-101231	
5.41. Curves and Surfaces in CAD I - M-INFO-100837	67
5.42. Curves and Surfaces in CAD III - M-INFO-101213	
5.43. Data and Storage Management - M-INFO-100739	
5.44. Data Privacy: From Anonymization to Access Control - M-INFO-104045	70
5.45. Data Science: Data-Driven Information Systems - M-WIWI-103117	71
5.46. Data Science: Data-Driven User Modeling - M-WIWI-103118	
5.47. Data Science: Evidence-based Marketing - M-WIWI-101647	74
5.48. Data Science: Intelligent, Adaptive, and Learning Information Services - M-WIWI-105661	75
5.49. Datamanagement in the Cloud - M-INFO-100769	
5.50. Decentralized Systems: Fundamentals, Modeling, and Applications - M-INFO-105334	77
5.51. Decision Procedures with Applications to Software Verification - M-INFO-104381	
5.52. Deep Learning and Neural Networks - M-INFO-104460	
5.53. Deep Learning for Computer Vision - M-INFO-104099	
5.54. Deployment of Database Systems - M-INFO-100780	81
5.55. Design and Architectures of Embedded Systems (ES2) - M-INFO-100831	
5.56. Design Principles for Interactive Real-Time Systems - M-INFO-100753	
5.57. Designing Interactive Information Systems - M-WIWI-104080	84
5.58. Development of Business Information Systems - M-WIWI-101477	
5.59. Digital Service Systems in Industry - M-WIWI-102808	
5.60. Distributed Computing - M-INFO-100761	
5.61. Econometrics and Statistics I - M-WIWI-101638	
5.62. Econometrics and Statistics II - M-WIWI-101639	89
5.63. Economic Theory and its Application in Finance - M-WIWI-101502	90
5.64. eEnergy: Markets, Services and Systems - M-WIWI-103720	
5.65. Electronic Markets - M-WIWI-101409	92
5.66. Embedded Systems for Multimedia and Image Processing - M-INFO-100759	94
5.67. Empirical Software Engineering - M-INFO-100798	95
5.68. Energy Economics and Energy Markets - M-WIWI-101451	
5.69. Energy Economics and Technology - M-WIWI-101452	
5.70. Energy Informatics 1 - M-INFO-101885	98
5.71. Energy Informatics 2 - M-INFO-103044	
5.72. Entrepreneurship (EnTechnon) - M-WIWI-101488	
5.73. Environmental Economics - M-WIWI-101468	101
5.74. European and National Technology Law - M-INFO-104810	102
5.75. Experimental Economics - M-WIWI-101505	
5.76. Finance 1 - M-WIWI-101482	104
5.77. Finance 2 - M-WIWI-101483	105
5.78. Finance 3 - M-WIWI-101480	
5.79. Formal Systems - M-INFO-100799	
5.80. Formal Systems II: Application - M-INFO-100744	109
5.81. Formal Systems II: Theory - M-INFO-100841	110
5.82. Fuzzy Sets - M-INFO-100839	
5.83. Geometric Optimization - M-INFO-100730	112
5.84. Governance, Risk & Compliance - M-INFO-101242	
5.85. Graph Partitioning and Graph Clustering in Theory and Practice - M-INFO-100758	
5.86. Growth and Agglomeration - M-WIWI-101496	
5.87. Hands-on Bioinformatics Practical - M-INFO-101573	
5.88. Heterogeneous Parallel Computing Systems - M-INFO-100822	
5.89. Human Brain and Central Nervous System: Anatomy, Information Transfer, Signal Processing, Neurophysiology and Therapy - M-INFO-100725	118
5.90. Human Computer Interaction - M-INFO-100729	119
5.91. Human Factors in Security and Privacy - M-WIWI-104520	
5.92. Human-Machine-Interaction in Anthropomatics: Basics - M-INFO-100824	
5.93. Humanoid Robots - Practical Course - M-INFO-102560	
5.94. Image Data Compression - M-INFO-100755	
5.95. Industrial Production II - M-WIWI-101471	

5.96. Industrial Production III - M-WIWI-101412	127
5.97. Information Processing in Sensor Networks - M-INFO-100895	
5.98. Information Systems in Organizations - M-WIWI-104068	
5.99. Information Systems: Analytical and Interactive Systems - M-WIWI-104814	
5.100. Information Systems: Engineering and Transformation - M-WIWI-104812	
5.101. Information Systems: Internet-based Markets and Services - M-WIWI-104813	133
5.102. Innovation and Growth - M-WIWI-101478	
5.103. Innovation Economics - M-WIWI-101514	
5.104. Innovation Management - M-WIWI-101507	
5.105. Innovative Concepts for Programming Industrial Robots - M-INFO-100791	
5.106. Integrated Network and Systems Management - M-INFO-100747	
5.107. Intellectual Property Law - M-INFO-101215	
5.108. Intelligent Systems and Services - M-WIWI-101456	
5.109. Interactive Computer Graphics - M-INFO-100732	
5.110. Internet of Everything - M-INFO-100800	
5.111. Introduction to Bioinformatics for Computer Scientists - M-INFO-100749	
5.112. Introduction to Video Analysis - M-INFO-100736	
5.112. IT-Security Management for Networked Systems - M-INFO-100786	
5.114. Lab Course Heterogeneous Computing - M-INFO-104072	
5.114. Lab Course: Natural Language Processing and Software Engineering - M-INFO-103138	
5.116. Lab: Designing Embedded Application-Specific Processors - M-INFO-101631	
5.117. Lab: Designing Embedded Systems - M-INFO-103808	
5.117. Lab. Designing Embedded Systems - M-INI O-103000	
5.119. Lab: Graph Visualization in Practice - M-INFO-103302	
5.120. Lab: Internet of Things (IoT) - M-INFO-103302	
5.120. Lab. Internet of Things (IOT) - M-INFO-103708 5.121. Lab: Low Power Design and Embedded Systems - M-INFO-104031	
5.121. Lab. Low Power Design and Embedded Systems - M-INPO-104031	
5.122. Laboratory in Cryptoanalysis - M-INFO-101559	
5.123. Laboratory in Cryptography - M-INFO-101558	
5.124. Laboratory in Cryptography - M-INFO-101558	
5.125. Laboratory in Security - M-INFO-101560 5.126. Localization of Mobile Agents - M-INFO-100840	
5.127. Low Power Design - M-INFO-100807	
5.127. Low Power Design - M-INPO-100807	
5.128. Machine Learning - M-WIWI-103356	
5.129. Machine Learning - Basic Methods - M-INFO-105252	
5.130. Machine Translation - M-INFO-100848	
5.131. Management Accounting - M-WIWI-101498	
5.133. Marketing and Sales Management - M-WIWI-105312	
5.134. Mathematical Programming - M-WIWI-101473	
5.135. Medical Robotics - M-INFO-100820	
5.136. Meshes and Point Clouds - M-INFO-100812	
5.137. Microeconomic Theory - M-WIWI-101500	
5.138. Mobile Communication - M-INFO-100785 5.139. Model-Driven Software Development - M-INFO-100741	
5.140. Models of Parallel Processing - M-INFO-100828	
5.141. Module Master Thesis - M-WIWI-104833	
5.142. Multicore Programming in Practice: Tools, Models, Languages - M-INFO-100985	
5.143. Multi-dimensional Signal Processing and Image Exploitation with Graphic Cards and Other Manycore-Processors - M-INFO-103154	; 1/8
5.144. Natural Language Dialog Systems - M-INFO-102414	170
5.145. Natural Language Processing and Dialog Modeling - M-INFO-100899	
5.146. Natural Language Processing and Software Engineering - M-INFO-100735	
5.147. Network Economics - M-WIWI-101406	
5.147. Network Security: Architectures and Protocols - M-INFO-100782	
5.140. Network Security: Architectures and Protocols - M-INFO-100762	
5.150. Operations Research in Supply Chain Management - M-WIWI-102832	
5.150. Operations Research in Supply Chain Management - M-WWW-102652	
5.151. Optimization and Synthesis of Embedded Systems (E31) - M-INPO-100830	
5.152. Parallel Computer Systems and Parallel Programming - M-INFO-100808	
5.154. Pattern Recognition - M-INFO-100825	
	170

5.155. Photorealistic Rendering - M-INFO-100731	
5.156. Practical Course Applied Telematics - M-INFO-101889	
5.157. Practical Course Automatic Speech Recognition - M-INFO-102411	
5.158. Practical Course Circuit Design with Intel Galileo - M-INFO-102353	
5.159. Practical Course Computer Vision for Human-Computer Interaction - M-INFO-102966	
5.160. Practical Course Data Management and Data Analysis - M-INFO-103050	196
5.161. Practical Course Decentralized Systems and Network Services - M-INFO-103047	197
5.162. Practical Course FPGA Programming - M-INFO-102661	
5.163. Practical Course Model-Driven Software Development - M-INFO-101579	199
5.164. Practical Course on Network Security Research - M-INFO-105413	
5.165. Practical Course Protocol Engineering - M-INFO-102092	
5.166. Practical Course Research Project: Hands-on Anthropomatics - M-INFO-102568	
5.167. Practical Course Software Defined Networking - M-INFO-101891	
5.168. Practical Course: Analysis of Complex Data Sets - M-INFO-102807	
5.169. Practical Course: Biologically Inspired Robots - M-INFO-105495	
5.170. Practical Course: Data Science - M-INFO-105632	
5.171. Practical Course: Database Systems - M-INFO-101662	
5.172. Practical Course: Digital Design & Test Automation Flow - M-INFO-102570	
5.173. Practical Course: Discrete Freeform Surfaces - M-INFO-101667	
5.174. Practical Course: General-Purpose Computation on Graphics Processing Units - M-INFO-100724	
5.175. Practical Course: Geometric Modeling - M-INFO-101666	
5.176. Practical Course: Hot Research Topics in Computer Graphics - M-INFO-104699	
5.177. Practical Course: Implementation and Evaluation of Advanced Data Mining Approaches for Semi-Structu - M-INFO-103128	
5.178. Practical Course: Neural Network Exercises - M-INFO-103143	
5.179. Practical Course: Programme Verification - M-INFO-101537	
5.180. Practical Course: Smart Data Analytics - M-INFO-103235	
5.181. Practical Course: Virtual Neurorobotics in the Human Brain Project - M-INFO-103227	
5.182. Practical Course: Visual Computing 2 - M-INFO-101567	
5.183. Practical Course: Web Applications and Service-Oriented Architectures (II) - M-INFO-101635	
5.184. Practical Introduction to Hardware Security - M-INFO-104357	
5.185. Practical Project Robotics and Automation I (Software) - M-INFO-102224	
5.186. Practical Project Robotics and Automation II (Hardware) - M-INFO-102230	
5.187. Practical SAT Solving - M-INFO-102825	
5.188. Practical SAT Solving (extended) - M-INFO-105622	
5.189. Practical: Course Engineering Approaches to Software Development - M-INFO-104254	
5.190. Praktikum: Graphics and Game Development - M-INFO-105384	
5.191. Principles of Automatic Speech Recognition - M-INFO-100847	
5.192. Private Business Law - M-INFO-101216	
5.193. Project Lab: Image Analysis and Fusion - M-INFO-102383	
5.194. Public Business Law - M-INFO-101217	
5.195. Randomized Algorithms - M-INFO-100794	
5.196. Rationale Splines - M-INFO-101857	
5.197. Rationale Splines - M-INFO-101853	
5.198. Real-Time Systems - M-INFO-100803	
5.199. Reconfigurable and Adaptive Systems - M-INFO-100721	
5.200. Reinforcement Learning and Neural Networks in Robotics - M-INFO-104894	
5.201. Reliable Computing I - M-INFO-100850	237
5.202. Requirements Engineering - M-INFO-100763	238
5.203. Research Project (Project, 1st Semester) - M-INFO-105037	239
5.204. Research Project (Project, 2nd Semester) - M-INFO-105038	
5.205. Research Project Autonomous Learning Robots - M-INFO-105378	
5.206. Robotics - Practical Course - M-INFO-102522	
5.207. Robotics I - Introduction to Robotics - M-INFO-100893	
5.208. Robotics II: Humanoid Robotics - M-INFO-102756	
5.209. Robotics III - Sensors and Perception in Robotics - M-INFO-104897	
5.210. Security - M-INFO-100834	
5.211. Seminar Information Systems - M-WIWI-104815	
5.212. Seminar Module Economic Sciences - M-WIWI-102736	
5.213. Seminar Module Informatics - M-INFO-102822	

5.215. Service Analytics - M-WIWI-101506	
5.216. Service Design Thinking - M-WIWI-101503	
5.217. Service Economics and Management - M-WIWI-1027	54
5.218. Service Innovation, Design & Engineering - M-WIWI-1	02806
5.219. Service Management - M-WIWI-101448	
5.220. Service Operations - M-WIWI-102805	
5.221. Signals and Codes - M-INFO-100823	
	- M-INFO-100802
•	
0	
5	
•	
-	
	nent - M-WIWI-101485
	(II) - M-INFO-100734
C C	
6. Courses	
•	
6.3. Access Control Systems: Foundations and Practice - T-IN	FO-106061
	ed Persons - T-INFO-101301 287
6.5. Advanced Data Structures - T-INFO-105687	
6.6. Advanced Empirical Asset Pricing - T-WIWI-110513	
6.7. Advanced Game Theory - T-WIWI-102861	
6.8. Advanced Lab in Ubiquitous Computing - T-WIWI-10276	1
6.10. Advanced Lab Security, Usability and Society - T-WIWI-	108439
6.12. Advanced Machine Learning and Data Science - T-WIW	I-111305
	9
	9
	104388
-	
	0
-	
•	
0.20. Application security Lab - 1-114FU-100207	

6.29. Applied Differential Geometry - T-INFO-104546	324
6.30. Applied Differential Geometry - Practical - T-INFO-111000	
6.31. Applied Econometrics - T-WIWI-103125	
6.32. Artificial Intelligence in Service Systems - T-WIWI-108715	
6.33. Artificial Intelligence in Service Systems - Applications in Computer Vision - T-WIWI-111219	329
6.34. Asset Pricing - T-WIWI-102647	
6.35. Auction Theory - T-WIWI-102613	
6.36. Automated Planning and Scheduling - T-INFO-109085	
6.37. Automated Visual Inspection and Image Processing - T-INFO-101363	
6.38. Basics of German Company Tax Law and Tax Planning - T-WIWI-108711	
6.39. Big Data Analytics - T-INFO-101305	
6.40. Big Data Analytics 2 - T-INFO-105742	
6.41. Biologically Inspired Robots - T-INFO-101351	
6.42. Biometric Systems for Person Identification - T-INFO-105948	
6.43. Blockchains & Cryptofinance - T-WIWI-108880	
6.44. Bond Markets - T-WIWI-110995	
6.45. Bond Markets - Models & Derivatives - T-WIWI-110997	
6.46. Bond Markets - Tools & Applications - T-WIWI-110996	
6.47. Business Data Analytics: Application and Tools - T-WIWI-109863	
6.48. Business Data Strategy - T-WIWI-106187	
6.49. Business Dynamics - T-WIWI-102762	
6.50. Business Intelligence Systems - T-WIWI-105777	
6.51. Business Models in the Internet: Planning and Implementation - T-WIWI-102639	
6.52. Business Planning - T-WIWI-102865	
6.53. Business Strategies of Banks - T-WIWI-102626	
6.54. Case Studies Seminar: Innovation Management - T-WIWI-102852	
6.55. Challenges in Supply Chain Management - T-WIWI-102872	
6.56. Cognitive Systems - T-INFO-101356	
6.57. Competition in Networks - T-WIWI-100005	
6.58. Computational Cartography - T-INFO-101291	
6.59. Computational Complexity Theory, with a View Towards Cryptography - T-INFO-103014	
6.60. Computational Geometry - T-INFO-104429	
6.61. Computer Architecture - T-INFO-101355	
6.62. Computer Contract Law - T-INFO-102036	
6.63. Computer Graphics - T-INFO-101393	
6.64. Computer Graphics Pass - T-INFO-104313	
6.65. Computer Vision for Human-Computer Interaction - T-INFO-101347	
6.66. Context Sensitive Systems - T-INFO-107499	
6.67. Convex Analysis - T-WIWI-102856	
6.68. Copyright - T-INFO-101308	
6.69. Corporate Compliance - T-INFO-101288	
6.70. Corporate Financial Policy - T-WIWI-102622	
6.71. Corporate Risk Management - T-WIWI-109050	
6.72. Credit Risk - T-WIWI-102645	
6.73. Critical Information Infrastructures - T-WIWI-109248	
6.74. Cryptographic Voting Schemes - T-INFO-101279	
6.75. Current Directions in Consumer Psychology - T-WIWI-111100	
6.76. Current Issues in Innovation Management - T-WIWI-102873	
6.77. Curves and Surfaces for Geometric Design II - T-INFO-102041	
6.78. Curves and Surfaces in CAD I - T-INFO-101374	
6.79. Curves and Surfaces in CAD II - T-INFO-102006	
6.80. Data and Storage Management - T-INFO-101276	
6.81. Data Mining and Applications - T-WIWI-103066	
6.82. Data Privacy: From Anonymization to Access Control - T-INFO-108377	
6.83. Data Protection by Design - T-INFO-108405	
6.84. Data Protection Law - T-INFO-101303	
6.85. Database Systems and XML - T-WIWI-102661	
6.86. Datamanagement in the Cloud - T-INFO-101306	
6.87. Decentralized Systems: Fundamentals, Modeling, and Applications - T-INFO-110820	
6.88. Decision Procedures with Applications to Software Verification - T-INFO-108955	

6.89. Deep Learning and Neural Networks - T-INFO-109124	
6.90. Deep Learning for Computer Vision - T-INFO-109796	396
6.91. Demand-Driven Supply Chain Planning - T-WIWI-110971	
6.92. Deployment of Database Systems - T-INFO-101317	398
6.93. Derivatives - T-WIWI-102643	
6.94. Design and Architectures of Embedded Systems (ES2) - T-INFO-101368	400
6.95. Design Principles for Interactive Real-Time Systems - T-INFO-101290	401
6.96. Design Thinking - T-WIWI-102866	402
6.97. Designing Interactive Systems - T-WIWI-110851	403
6.98. Developing Business Models for the Semantic Web - T-WIWI-102851	405
6.99. Digital Health - T-WIWI-109246	
6.100. Digital Marketing and Sales in B2B - T-WIWI-106981	408
6.101. Digital Services: Business Models and Transformation - T-WIWI-110280	
6.102. Digital Transformation and Business Models - T-WIWI-108875	
6.103. Discrete-Event Simulation in Production and Logistics - T-WIWI-102718	
6.104. Distributed Computing - T-INFO-101298	
6.105. Dynamic Macroeconomics - T-WIWI-109194	
6.106. Efficient Energy Systems and Electric Mobility - T-WIWI-102793	
6.107. eFinance: Information Systems for Securities Trading - T-WIWI-110797	
6.108. Embedded Systems for Multimedia and Image Processing - T-INFO-101296	
6.109. Emerging Trends in Digital Health - T-WIWI-110144	
6.110. Emerging Trends in Internet Technologies - T-WIWI-110143	
6.111. Emissions into the Environment - T-WIWI-102634	
6.112. Empirical Software Engineering - T-INFO-101335	
6.113. Employment Law I - T-INFO-101329	
6.114. Employment Law II - T-INFO-101329	
6.115. Energy and Environment - T-WIWI-102650	
6.116. Energy Informatics 1 - T-INFO-103582	
6.117. Energy Informatics 1 - 1-INFO-103582	
6.118. Energy Informatics 2 - T-INFO-106059	
6.119. Energy Market Engineering - T-WIWI-107501	
6.120. Energy Networks and Regulation - T-WIWI-107503	
6.121. Energy Systems Analysis - T-WIWI-102830	
6.122. Energy Trade and Risk Management - T-WIWI-102691	435
6.123. Engineering Interactive Systems - T-WIWI-110877	
6.124. Entrepreneurial Leadership & Innovation Management - T-WIWI-102833	
6.125. Entrepreneurship - T-WIWI-102864	
6.126. Entrepreneurship Research - T-WIWI-102894	
6.127. Environmental and Resource Policy - T-WIWI-102616	
6.128. Environmental Economics and Sustainability - T-WIWI-102615	
6.129. Environmental Law - T-BGU-111102	
6.130. European and International Law - T-INFO-101312	
6.131. European and National Technology Law - T-INFO-109824	
6.132. Experimental Economics - T-WIWI-102614	
6.133. Extraordinary additional course in the module Cross-Functional Management Accounting - T-WIWI-108651	
6.134. Financial Analysis - T-WIWI-102900	
6.135. Financial Econometrics - T-WIWI-103064	
6.136. Financial Econometrics II - T-WIWI-110939	
6.137. Financial Intermediation - T-WIWI-102623	
6.138. Firm creation in IT security - T-WIWI-110374	
6.139. Fixed Income Securities - T-WIWI-102644	
6.140. Formal Systems - T-INFO-101336	
6.141. Formal Systems II: Application - T-INFO-101281	458
6.142. Formal Systems II: Theory - T-INFO-101378	459
6.143. Fundamentals of National and International Group Taxation - T-WIWI-111304	460
6.144. Fuzzy Sets - T-INFO-101376	461
6.145. Geometric Optimzation - T-INFO-101267	462
6.146. Global Optimization I - T-WIWI-102726	
6.147. Global Optimization I and II - T-WIWI-103638	
6.148. Global Optimization II - T-WIWI-102727	

6.149. Graph Partitioning and Graph Clustering in Theory and Practice - T-INFO-101295	470
6.150. Graph Partitioning and Graph Clustering in Theory and Practice - Practical - T-INFO-110999	471
6.151. Graph Theory and Advanced Location Models - T-WIWI-102723	472
6.152. Growth and Development - T-WIWI-111318	473
6.153. Hands-on Bioinformatics Practical - T-INFO-103009	475
6.154. Heat Economy - T-WIWI-102695	476
6.155. Heterogeneous Parallel Computing Systems - T-INFO-101359	
6.156. Human Brain and Central Nervous System: Anatomy, Information Transfer, Signal Processing, Neurophysiology and Therapy - T-INFO-101262	
6.157. Human Factors in Security and Privacy - T-WIWI-109270	470
6.158. Human-Machine-Interaction - T-INFO-101266	
6.159. Human-Machine-Interaction in Anthropomatics: Basics - T-INFO-101361	
6.160. Human-Machine-Interaction Pass - T-INFO-106257	
6.161. Humanoid Robots - Practical Course - T-INFO-105142	
6.162. Image Data Compression - T-INFO-101292	
6.163. Incentives in Organizations - T-WIWI-105781	
6.164. Information Processing in Sensor Networks - T-INFO-101466	
6.165. Information Service Engineering - T-WIWI-106423	
6.166. Innovation Management: Concepts, Strategies and Methods - T-WIWI-102893	
6.167. Innovation Processes Live - T-WIWI-110234	
6.168. Innovation Theory and Policy - T-WIWI-102840	
6.169. Innovative Concepts for Programming Industrial Robots - T-INFO-101328	
6.170. Integrated Network and Systems Management - T-INFO-101284	
6.171. Intelligent Agent Architectures - T-WIWI-111267	
6.172. Intelligent Agents and Decision Theory - T-WIWI-110915	
6.173. Interactive Computer Graphics - T-INFO-101269	501
6.174. International Business Development and Sales - T-WIWI-110985	502
6.175. International Finance - T-WIWI-102646	503
6.176. International Management in Engineering and Production - T-WIWI-102882	505
6.177. Internet Law - T-INFO-101307	506
6.178. Internet of Everything - T-INFO-101337	
6.179. Introduction to Bayesian Statistics for Analyzing Data - T-WIWI-110918	
6.180. Introduction to Bioinformatics for Computer Scientists - T-INFO-101286	
6.181. Introduction to Stochastic Optimization - T-WIWI-106546	
6.182. Introduction to Video Analysis - T-INFO-101273	
6.183. IT- Security Law - T-INFO-109910	
6.184. IT-Security Management for Networked Systems - T-INFO-101323	
6.185. Joint Entrepreneurship Summer School - T-WIWI-109064	
6.186. Judgment and Decision Making - T-WIWI-111099	
6.187. KD ² Lab Hands-On Research Course: New Ways and Tools in Experimental Economics - T-WIWI-11109	
6.188. Knowledge Discovery - T-WIWI-102666	
6.189. Lab Course Heterogeneous Computing - T-INFO-108447	
6.190. Lab Course: Natural Language Processing and Software Engineering - T-INFO-106239	
6.191. Lab: Designing Embedded Application-Specific Processors - T-INFO-103115	
6.192. Lab: Designing Embedded Systems - T-INFO-107689	
6.193. Lab: Efficient parallel C++ - T-INFO-106992	
6.194. Lab: Graph Visualization in Practice - T-INFO-106580	
6.195. Lab: Internet of Things (IoT) - T-INFO-107493	
6.196. Lab: Low Power Design and Embedded Systems - T-INFO-108323	
6.197. Laboratory Course Algorithm Engineering - T-INFO-104374	
6.198. Laboratory in Cryptoanalysis - T-INFO-102990	
6.199. Laboratory in Cryptography - T-INFO-102989	
6.200. Laboratory in Security - T-INFO-102991	
6.201. Large-scale Optimization - T-WIWI-106549	
6.202. Law of Contracts - T-INFO-101316	
6.203. Liberalised Power Markets - T-WIWI-107043	
6.204. Life Cycle Assessment - T-WIWI-110512	
6.205. Localization of Mobile Agents - T-INFO-101377	
6.206. Low Power Design - T-INFO-101344	
6.207. Machine Learning - Basic Methods - T-INFO-110630	542

6.208. Machine Learning 1 - Basic Methods - T-WIWI-106340	
6.209. Machine Learning 2 - Advanced Methods - T-WIWI-106341	
6.210. Machine Translation - T-INFO-101385	547
6.211. Management Accounting 1 - T-WIWI-102800	548
6.212. Management Accounting 2 - T-WIWI-102801	550
6.213. Management of IT-Projects - T-WIWI-102667	552
6.214. Managing New Technologies - T-WIWI-102612	554
6.215. Market Engineering: Information in Institutions - T-WIWI-102640	
6.216. Market Research - T-WIWI-107720	556
6.217. Marketing Analytics - T-WIWI-103139	
6.218. Marketing Strategy Business Game - T-WIWI-102835	
6.219. Master Thesis - T-WIWI-103142	
6.220. Mathematics for High Dimensional Statistics - T-WIWI-111247	
6.221. Medical Robotics - T-INFO-101357	
6.222. Meshes and Point Clouds - T-INFO-101349	
6.223. Methods in Economic Dynamics - T-WIWI-102906	
6.224. Methods in Innovation Management - T-WIWI-110263	
6.225. Mixed Integer Programming I - T-WIWI-102719	
6.226. Mixed Integer Programming II - T-WIWI-102720	
6.227. Mobile Communication - T-INFO-101322	
6.228. Model Driven Software Development - T-INFO-101278	
6.229. Modeling and Analyzing Consumer Behavior with R - T-WIWI-102899	
6.230. Modeling and OR-Software: Advanced Topics - T-WIWI-106200	
6.231. Models of Parallel Processing - T-INFO-101365	
6.232. Multicore Programming in Practice: Tools, Models, Languages - T-INFO-101565	
6.233. Multi-Dimensional Signal Processing and Image Exploitation with Graphic Cards and Other Manyo - T-INFO-106278	
6.234. Multivariate Statistical Methods - T-WIWI-103124	
6.235. Natural Language Processing and Dialog Modeling - T-INFO-101473	
6.236. Natural Language Processing and Software Engineering - T-INFO-101272	
6.237. Network Security: Architectures and Protocols - T-INFO-101319	
6.238. Next Generation Internet - T-INFO-101321	
6.239. Non- and Semiparametrics - T-WIWI-103126	
6.240. Nonlinear Optimization I - T-WIWI-102724	
6.241. Nonlinear Optimization I and II - T-WIWI-103637	
6.242. Nonlinear Optimization II - T-WIWI-102725	
6.243. Operations Research in Health Care Management - T-WIWI-102884	
6.244. Operations Research in Supply Chain Management - T-WIWI-102715	
6.245. Optimization and Synthesis of Embedded Systems (ES1) - T-INFO-101367	
6.246. Optimization Models and Applications - T-WIWI-110162	
6.247. Optimization under Uncertainty - T-WIWI-106545	
6.248. Panel Data - T-WIWI-103127	
6.249. Parallel Algorithms - T-INFO-101333	
6.250. Parallel Computer Systems and Parallel Programming - T-INFO-101345	
6.251. Parametric Optimization - T-WIWI-102855	
6.252. Patent Law - T-INFO-101310	
6.253. Pattern Recognition - T-INFO-101362	
6.254. Personalization and Services - T-WIWI-102848	
6.255. Photorealistic Rendering - T-INFO-101268	
6.256. Planning and Management of Industrial Plants - T-WIWI-102631	
6.257. Portfolio and Asset Liability Management - T-WIWI-103128	
6.258. Practical Course Applied Telematics - T-INFO-103585	
6.259. Practical Course Automatic Speech Recognition - T-INFO-104775	
6.260. Practical Course Circuit Design with Intel Galileo - T-INFO-105580	
6.261. Practical Course Computer Vision for Human-Computer Interaction - T-INFO-105943	
6.262. Practical Course Data Management and Data Analysis - T-INFO-106066	
6.263. Practical Course Decentralized Systems and Network Services - T-INFO-106063	
6.264. Practical Course Digital Design & Test Automation Flow - T-INFO-105565	
6.265. Practical Course Engineering Approaches to Software Development - T-INFO-108791	
6.266. Practical Course FPGA Programming - T-INFO-105576	

6.267. Practical Course Model-Driven Software Development - T-INFO-103029	615
6.268. Practical Course Natural Language Dialog Systems - T-INFO-104780	616
6.269. Practical Course on Network Security Research - T-INFO-110938	617
6.270. Practical Course Protocol Engineering - T-INFO-104386	618
6.271. Practical Course Research Project: Hands-on Anthropomatics - T-INFO-105278	619
6.272. Practical Course Software Defined Networking - T-INFO-103587	
6.273. Practical Course: Analysis of Complex Data Sets - T-INFO-105796	
6.274. Practical Course: Biologically Inspired Robots - T-INFO-111039	
6.275. Practical Course: Data Science - T-INFO-111262	
6.276. Practical Course: Database Systems - T-INFO-103201	
6.277. Practical Course: Discrete Freeform Surfaces - T-INFO-103208	
6.278. Practical Course: General-Purpose Computation on Graphics Processing Units - T-INFO-109914	
6.279. Practical Course: Geometric Modeling - T-INFO-103207	
6.280. Practical Course: Hot Research Topics in Computer Graphics - T-INFO-109577	
6.281. Practical Course: Implementation and Evaluation of Advanced Data Mining Approaches for Semi-Structu	
- T-INFO-106219	lieu Data 027
6.282. Practical Course: Neural Network Exercises - T-INFO-106259	630
6.283. Practical Course: Programme Verification - T-INFO-102953	
6.284. Practical Course: Smart Data Analytics - T-INFO-106426	
6.285. Practical Course: Smart Data Analytics - 1-INFO-106426	
·	
6.286. Practical Course: Visual Computing 2 - T-INFO-103000	
6.287. Practical Course: Web Applications and Service-Oriented Architectures (II) - T-INFO-103121	
6.288. Practical Introduction to Hardware Security - T-INFO-108920	
6.289. Practical Project Robotics and Automation I (Software) - T-INFO-104545	
6.290. Practical Project Robotics and Automation II (Hardware) - T-INFO-104552	
6.291. Practical SAT Solving - T-INFO-105798	
6.292. Practical SAT Solving (extended) - T-INFO-111254	
6.293. Practical Seminar Digital Service Systems - T-WIWI-106563	
6.294. Practical Seminar: Advanced Analytics - T-WIWI-108765	
6.295. Practical Seminar: Data-Driven Information Systems - T-WIWI-106207	
6.296. Practical Seminar: Health Care Management (with Case Studies) - T-WIWI-102716	
6.297. Practical Seminar: Information Systems and Service Design - T-WIWI-108437	646
6.298. Practical Seminar: Service Innovation - T-WIWI-110887	648
6.299. Praktikum: Graphics and Game Development - T-INFO-110872	649
6.300. Predictive Mechanism and Market Design - T-WIWI-102862	650
6.301. Predictive Modeling - T-WIWI-110868	651
6.302. Price Management - T-WIWI-105946	
6.303. Price Negotiation and Sales Presentations - T-WIWI-102891	
6.304. Pricing Excellence - T-WIWI-111246	654
6.305. Principles of Automatic Speech Recognition - T-INFO-101384	
6.306. Product and Innovation Management - T-WIWI-109864	
6.307. Production and Logistics Management - T-WIWI-102632	
6.308. Project Lab Cognitive Automobiles and Robots - T-WIWI-109985	
6.309. Project Lab Machine Learning - T-WIWI-109983	
6.310. Project Lab: Image Analysis and Fusion - T-INFO-104746	
6.311. Project Management - T-WIWI-103134	
6.312. Psychological Processes in Individual Decisions - T-WIWI-111315	
6.313. Public Management - T-WIWI-102740	
6.314. Public Media Law - T-INFO-101311	
6.315. Public Revenues - T-WIWI-102739	
6.316. Quantitative Methods in Energy Economics - T-WIWI-107446	
6.317. Randomized Algorithms - T-INFO-101331	
6.318. Rationale Splines - T-INFO-103544	
6.319. Rationale Splines - T-INFO-103543	
6.320. Real-Time Systems - T-INFO-101340	
6.321. Recommender Systems - T-WIWI-102847	
6.322. Reconfigurable and Adaptive Systems - T-INFO-101258	
6.323. Regulation Theory and Practice - T-WIWI-102712	
6.324. Reinforcement Learning and Neural Networks in Robotics - T-INFO-109928	
6.325. Reliable Computing I - T-INFO-101387	681

0.327 Research Project (Project, 115 Semester) - Oral Exam - T-INFO-110218 683 6.328 Research Project (Project, 115 Semester) - Project Proposal - T-INFO-110220 685 6.330 Research Project (Project, 115 Semester) - Project Proposal - T-INFO-110221 686 6.331 Research Project (Project, 2nd Semester) - Presentation - T-INFO-110222 687 6.333 Research Project (Project, 2nd Semester) - Presentation - T-INFO-110223 688 6.333 Research Project (Project, 2nd Semester) - Scientific Report - T-INFO-110223 688 6.334 Risk Management in Industrial Supply Networks - T-WWU-102826 690 6.335 Robatics - T-INFO-108014 693 6.336 Robatics - T-INFO-108014 693 6.337 Robatics II - Huroduction to Robatics - T-INFO-109931 695 6.341 Selected Issue in Critical Information Infrastructures - T-WWI-102251 697 6.343 Sematir Web Technologies - T-WWI-102482 698 6.343 Sematir in Economics A (Master) - T-WWI-10247 702 6.344 Selected Issue in Critical Information Infrastructures - T-WWI-10247 725 6.345 Seminar in Economics A (Master) - T-WWI-102480 </th <th>6.326. Requirements Engineering - T-INFO-101300</th> <th>682</th>	6.326. Requirements Engineering - T-INFO-101300	682
6.328. Research Project (Project, 1st Semester) - Presentation - T-INFO-110221 684 6.329. Research Project (Project, 1st Semester) - Presentation - T-INFO-110221 686 6.330. Research Project (Project, 2nd Semester) - Oral Exam - T-INFO-110221 687 6.331. Research Project (Project, 2nd Semester) - Scientific Report - T-INFO-110222 687 6.332. Research Project (Project, 2nd Semester) - Scientific Report - T-INFO-110223 688 6.333. Research Project (Project, 2nd Semester) - Scientific Report - T-INFO-110223 688 6.334. Risk Management in Industrial Supply Networks - T-WIWI-102826 690 6.335. Roadmapping - T-WIWI-102853 691 6.336. Robotics - Practical Course - T-INFO-105107 692 6.337. Robotics II I-Introduction Robotics - T-INFO-109014 693 6.341. Selected Issues in Critical Information Infrastructures - T-WIWI-102251 694 6.343. Semantic Web Technologies - T-INFO-106014 699 6.344. Seminar in Economic Policy - T-WIWI-102484 699 6.343. Semantic Web Technologies - T-INFO-100371 696 6.344. Seminar in Information S (Master) - T-WIWI-103478 716 6.345. Seminar in Information S (Master) - T-WIWI-103478 719 6.345. Seminar in Information S (Master) - T-WIWI-103480		
6.329. Research Project (Project, 1st Semester) - Project Proposal -T.INFO-110221 686 6.330. Research Project (Project, 2nd Semester) - Oral Exam -T.INFO-110221 686 6.331. Research Project (Project, 2nd Semester) - Scientific Report -T.INFO-110222 687 6.332. Research Project (Project, 2nd Semester) - Scientific Report -T.INFO-110223 688 6.333. Research Project (Project, 2nd Semester) - Scientific Report -T.INFO-110223 689 6.334. Research Project Atomorous Learning Robots -T.INFO-110223 689 6.335. Roadmapping -T.WWI-102853 690 6.336. Robotics - Practical Course -T-INFO-105107 692 6.337. Roadmapping -T.WWI-102853 694 6.338. Robotics II - Hunodo Robotics - T-INFO-108014 693 6.339. Robotics II - Hunodo Robotics - T-INFO-109931 696 6.341. Selected Issues in Critical Information Infrastructures -T-WIWI-109251 697 6.342. Selected Legal Issues of Internet Law. T-INFO-100462 698 6.343. Sematrin Business Administration A (Master) - T-WIWI-103474 702 6.344. Seminar in Robotics - TWIWI-102480 715 6.345. Seminar in Economic Rolfy - T-WIWI-102480 716 6.347. Seminar in Informatics B (Master) - T-WIWI-103478 716 6.348. S		
6.330. Research Project (Project, 2nd Semester) - Oral Exam -T-INFO-110221 686 6.331. Research Project (Project, 2nd Semester) - Scientific Report - T-INFO-110222 687 6.332. Research Project (Project, 2nd Semester) - Scientific Report - T-INFO-110222 688 6.333. Research Project Autonomous Learning Robots - T-INFO-1102826 680 6.334. Risk Management in Industrial Supply Networks - T-WIW-I102826 690 6.335. Roadmapping - T-WIW-102853 691 6.336. Robotics - Practical Course - T-INFO-105107 692 6.337. Robotics I: Intumation to Robotics - T-INFO-106014 693 6.338. Robotics II: Humanoid Robotics - T-INFO-106014 693 6.341. Selected Issues in Critical Information Infrastructures - T-WIWI-109251 696 6.341. Selected Legal Issues in Critical Information Infrastructures - T-WIWI-109251 696 6.343. Semantic Web Technologies - T-INWU-100462 698 6.344. Seminar in Busines Xalministration A (Master) - T-WIWI-103474 702 6.345. Seminar in Biomoxins Research A (Master) - T-WIWI-103474 702 6.346. Seminar in Informatics B (Master) - T-WIWI-103480 719 6.347. Seminar in Informatics B (Master) - T-WIWI-103480 734 6.348. Seminar in Informatics Master - T-INFO-104360 736<		
6.331. Research Project (Project, 2nd Semester) - Scientific Report - T-INFO-110223 687 6.332. Research Project Autonomous Learning Robots - T-INFO-110223 688 6.333. Research Project Autonomous Learning Robots - T-INFO-1102826 690 6.334. Risk Management in Industrial Supply Networks - T-WIWI-102826 691 6.335. Roadmapping - T-WIWI-102853 691 6.337. Robotics - Introduction to Robotics - T-INFO-105014 692 6.337. Robotics I: I-Introduction to Robotics - T-INFO-105014 693 6.338. Robotics I: I-Introduction to Robotics - T-INFO-105014 694 6.338. Robotics I: I-Introduction to Robotics - T-INFO-105013 696 6.341. Selected Issues in Critical Information Infrastructures - T-WIWI-109251 697 6.342. Selected Issues in Critical Information Infrastructures - T-WIWI-100251 697 6.343. Seminar in Business Administration A (Master) - T-WIWI-103478 699 6.344. Seminar in Business Administration A (Master) - T-WIWI-103478 716 6.345. Seminar in Informatics B (Master) - T-WIWI-103478 716 6.345. Seminar in Information Systems (Master) - T-WIWI-103483 734 6.345. Seminar in Informatics A (Master) - T-WIWI-103483 734 6.352. Seminar Informatics A (Master) - T-WIWI-103483 <td< td=""><td></td><td></td></td<>		
6.332 Research Project (Project, 2nd Semester) - Scientific Report. T-INFO-110223 688 6.333 Research Project Autonomus Learning Robots - T-INFO-110861 689 6.334 Risk Management in Industrial Supply Networks - T-WIW1-102826 690 6.335 Robotics - Practical Course - T-INFO-105107 692 6.337 Robotics I: I-Introduction to Robotics - T-INFO-108014 693 6.338 Robotics II: Humanoid Robotics - T-INFO-105723 694 6.339 Robotics III - Semosa and Perception in Robotics - T-INFO-109931 695 6.341 Security - T-INFO-101371 696 6.342 Selectal Legal Isues of Internet Law - T-INFO-108462 698 6.343 Seminari in Economic Policy - T-WIW1-102484 699 6.344 Seminari in Economic Policy - T-WIW1-102489 716 6.345 Seminari in Conomic Policy - T-WIW1-102480 716 6.346 Seminari in Information Systems (Master) - T-WIW1-109827 725 6.349 Seminari In Informatics Master) - T-WIW1-102481 731 6.350 Seminari In Statistics & (Master) - T-WIW1-103480 734 6.351 Seminari Informatics Master)		
6.333. Research Project Autonomous Learning Robots - T-INFO-110861 689 6.334. Risk Management in Industrial Supply Networks - T-WIWI-102826 690 6.335. Roadmapping - T-WIWI-102853 691 6.336. Robotics - Practical Course - T-INFO-105107 692 6.337. Robotics I. Introduction to Robotics - T-INFO-108014 693 6.338. Robotics III - Sensors and Perception in Robotics - T-INFO-109931 694 6.341. Selected Issues in Critical Information Infrastructures - T-WIWI-109251 697 6.342. Selected Legal Issues of Internet Law - T-INFO-108462 698 6.343. Semiant in Web Technologies - T-WIWI-1008474 699 6.344. Seminar in Economics A (Master) - T-WIWI-103474 6702 6.345. Seminar in Economics A (Master) - T-WIWI-103478 715 6.346. Seminar in Informatics B (Master) - T-WIWI-103478 714 6.347. Seminar in Informatics B (Master) - T-WIWI-103481 731 6.350. Seminar in Operations Research A (Master) - T-WIWI-103481 734 6.353. Seminar Informatics A T-INFO-110205 738 6.353. Seminar Informatics A T-INFO-1012047 740 6.354. Seminar Informatics A T-INFO-1102047 740 6.355. Seminar Informatics A T-INFO-1012047 740 6.354. Seminar Informatics A T-INFO-1012047		
6.334. Risk Management in Industrial Supply Networks - T-WIWI-102826 690 6.335. Roadmapping - T-WIWI-102853 691 6.336. Robotics - Practical Currse - T-INFO-105107 692 6.337. Robotics I - Introduction to Robotics - T-INFO-108014 693 6.338. Robotics II - Ensors and Perception in Robotics - T-INFO-109931 695 6.340. Security - T-INFO-101371 696 6.341. Selected Issues in Critical Information Infrastructures - T-WIWI-109251 697 6.342. Selected Issues in Critical Information Infrastructures - T-WIWI-109251 697 6.343. Semantic Web Technologies - T-WIWI-10848 699 6.344. Seminar in Economic Policy - T-WIWI-102789 715 6.345. Seminar in Economics A (Master) - T-WIWI-103480 719 6.346. Seminar in Informatics B (Master) - T-WIWI-103480 719 6.345. Seminar in Informatics B (Master) - T-WIWI-103480 734 6.355. Seminar in Informatics A (Master) - T-WIWI-103480 734 6.355. Seminar in Informatics A (Master) - T-WIWI-103480 734 6.350. Seminar in Statistics A (Master) - T-WIWI-103480 734 6.351. Seminar Informatics A Master) - T-WIWI-103480 734 6.352. Seminar Informatics A - T-INFO-111205 738 <t< td=""><td></td><td></td></t<>		
6.335. Roadmapping - T-WIWI-102853 691 6.336. Robotics - Practical Course - T-INFO-105107 692 6.337. Robotics I - Introduction to Robotics - T-INFO-108014 693 6.338. Robotics II - Broduction to Robotics - T-INFO-109731 694 6.340. Security - T-INFO-101371 696 6.341. Selected Issues in Critical Information Infrastructures - T-WIWI-109251 697 6.342. Secured Legal Issues of Internet Law - T-INFO-108462 698 6.343. Seminar in Business Administration A (Master) - T-WIWI-103474 702 6.344. Seminar in Economic A (Master) - T-WIWI-103478 716 6.345. Seminar in Informatics B (Master) - T-WIWI-103478 716 6.345. Seminar in Informatics B (Master) - T-WIWI-103480 739 6.345. Seminar in Informatics B (Master) - T-WIWI-103478 731 6.346. Seminar in Informatics A (Master) - T-WIWI-103483 734 6.351. Seminar in Informatics A (Master) - T-WIWI-103483 734 6.352. Seminar Informatics A (Master) - T-WIWI-103483 734 6.353. Seminar Informatics Master - T-INFO-111205 738 6.353. Seminar Informatics Master - T-INFO-101436 744 6.355. Seminar Covernance, Risk & Compliance T-INFO-102047 740 6.355. Seminar Covernance, Risk & Compliance T-INFO-101207 <td>· · ·</td> <td></td>	· · ·	
6.336. Robotics - Practical Course - T-INFO-105107		
6.338. Robotics II: Humanoid Robotics - T-INFO-105723 694 6.339. Robotics III: Sensors and Perception in Robotics - T-INFO-109931 695 6.340. Security - T-INFO-101371 696 6.341. Selected Issues in Critical Information Infrastructures - T-WIWI-109251 697 6.342. Seminar in Business Administration A (Master) - T-WIWI-103474 699 6.343. Seminar in Economic Policy - T-WIWI-102789 715 6.345. Seminar in Informatics B (Master) - T-WIWI-103478 716 6.347. Seminar in Informatics B (Master) - T-WIWI-103480 719 6.348. Seminar in Informatics R (Master) - T-WIWI-103480 731 6.349. Seminar in Informatics R (Master) - T-WIWI-103481 731 6.350. Seminar in Statistics A (Master) - T-WIWI-103483 734 6.351. Seminar Informatics A - T-INFO-104336 736 6.352. Seminar Informatics A - T-INFO-101205 738 6.353. Seminar Informatics A - T-INFO-101205 738 6.353. Seminar Covernance, Risk & Compliance - T-INFO-102047 740 6.355. Seminar: Cegal Studies I - T-INFO-101997 741 6.357. Service Innovation - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102849 744 6.358. Signals and Codes - T-INFO-101997 741 <td< td=""><td></td><td></td></td<>		
6.339. Robotics III - Sensors and Perception in Robotics - T-INFO-109931 695 6.340. Security - T-INFO-101371 696 6.341. Selected Issues in Critical Information Infrastructures - T-WIWI-109251 697 6.342. Selected Legal Isues of Internet Law - T-INFO-108462 698 6.343. Semantic Web Technologies - T-WIWI-1010848 699 6.344. Seminar in Business Administration A (Master) - T-WIWI-103474 702 6.345. Seminar in Economic Policy - T-WIWI-103478 715 6.346. Seminar in Informatics B (Master) - T-WIWI-103480 719 6.347. Seminar in Informatics Master) - T-WIWI-103481 721 6.349. Seminar in Operations Research A (Master) - T-WIWI-103481 734 6.350. Seminar in Statistics (Master) - T-WIWI-103483 734 6.351. Seminar Informatics A - T-INFO-104336 736 6.352. Seminar Informatics A - T-INFO-101205 738 6.353. Seminar Cagal Studies I - T-INFO-1012047 740 6.354. Seminar: Governance, Risk & Compliance - T-INFO-102047 740 6.355. Seminar: Governance, Risk & Compliance - T-INFO-102047 740 6.355. Seminar: Legal Studies I - T-INFO-101360 748 6.357. Service Innovation - T-WIWI-102641 744 6.359. Simulation Game in Energy Economics - T-WIWI-108016	6.337. Robotics I - Introduction to Robotics - T-INFO-108014	
6.340. Security - T-INFO-101371 696 6.341. Selected issues in Critical Information Infrastructures - T-WIWI-109251 697 6.342. Selected legal luss of Internet Law - T-INFO-108462 698 6.343. Seminar in Business Administration A (Master) - T-WIWI-103474 702 6.345. Seminar in Economic Policy - T-WIWI-102789 715 6.346. Seminar in Economics A (Master) - T-WIWI-103478 716 6.347. Seminar in Informatics B (Master) - T-WIWI-103478 716 6.348. Seminar in Informatics B (Master) - T-WIWI-103480 719 6.348. Seminar in Operations Research A (Master) - T-WIWI-103481 731 6.350. Seminar in Statistics A (Master) - T-WIWI-103483 734 6.351. Seminar Informatics A - T-INFO-104336 736 6.352. Seminar Informatics Master - T-INFO-1012047 738 6.353. Seminar Methods along the Innovation process - T-WIWI-110987 739 6.354. Seminar: Legal Studies I - T-INFO-1012047 740 6.355. Service Design Thinking - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102849 743 6.358. Simulation Game in Energy Economics - T-WIWI-102047 740 6.359. Simulation Game in Energy Economics - T-WIWI-102047 744 </td <td>6.338. Robotics II: Humanoid Robotics - T-INFO-105723</td> <td></td>	6.338. Robotics II: Humanoid Robotics - T-INFO-105723	
6.341. Selected Issues in Critical Information Infrastructures - T-WIWI-109251 697 6.342. Selected Legal Isues of Internet Law - T-INFO-108462 698 6.343. Seminar in Economic Policy - T-WIWI-1010848 699 6.344. Seminar in Economic Policy - T-WIWI-102789 715 6.345. Seminar in Economic Policy - T-WIWI-102789 716 6.347. Seminar in Iconomic Policy - T-WIWI-103478 719 6.348. Seminar in Informatics B (Master) - T-WIWI-103480 719 6.349. Seminar in Operations Research A (Master) - T-WIWI-103481 731 6.350. Seminar in Operations Research A (Master) - T-WIWI-103481 734 6.351. Seminar Informatics A (Master) - T-WIWI-103483 734 6.352. Seminar in Informatics A Master) - T-WIWI-103483 734 6.353. Seminar Informatics A Master) - T-NIFO-111205 738 6.353. Seminar Informatics Master - T-INFO-111205 738 6.354. Seminar: Legal Studies I - T-INFO-101997 741 6.355. Seminar: Legal Studies I - T-INFO-101997 744 6.355. Seminar: Legal Studies I - T-INFO-101974 744 6.356. Service Design Thinking - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102641 744 6.358. Signals and Codes - T-INFO-101380 746	6.339. Robotics III - Sensors and Perception in Robotics - T-INFO-109931	
6.342. Selected Legal Isues of Internet Law - T-INFO-108462 698 6.343. Semantic Web Technologies - T-WIWI-110848 699 6.344. Seminar in Business Administration A (Master) - T-WIWI-103474 702 6.345. Seminar in Economic Policy - T-WIWI-102789 715 6.346. Seminar in Economics A (Master) - T-WIWI-103478 716 6.347. Seminar in Informatics B (Master) - T-WIWI-103480 719 6.348. Seminar in Operations Research A (Master) - T-WIWI-103481 731 6.350. Seminar in Statistics A (Master) - T-WIWI-103483 734 6.351. Seminar Informatics B - T-INFO-101326 738 6.352. Seminar Informatics A - T-INFO-101326 738 6.353. Seminar Methods along the Innovation process - T-WIWI-110987 740 6.355. Seminar: Legal Studies I - T-INFO-10197 741 6.356. Service Design Thinking - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102849 743 6.358. Signals and Codes - T-INFO-101390 744 6.359. Simulation Game in Energy Economics - T-WIWI-108016 747 6.361. Signals and Codes - T-INFO-101380 746 6.352. Social Choice Theory - T-WIWI-102859 750 6.363. Sociotechnical Information Systems Development - T-WIWI-109249 751 <t< td=""><td>6.340. Security - T-INFO-101371</td><td></td></t<>	6.340. Security - T-INFO-101371	
6.343. Semantic Web Technologies - T-WIWI-110848 699 6.344. Seminar in Business Administration A (Master) - T-WIWI-103474 702 6.345. Seminar in Economic Policy - T-WIWI-102789 715 6.346. Seminar in Informatics B (Master) - T-WIWI-103478 716 6.347. Seminar in Informatics B (Master) - T-WIWI-103480 719 6.348. Seminar in Informatics B (Master) - T-WIWI-109827 725 6.349. Seminar in Informations Research A (Master) - T-WIWI-103481 731 6.350. Seminar in Statistics A (Master) - T-WIWI-103483 734 6.351. Seminar Informatics Master - T-INFO-111205 738 6.352. Seminar Methods along the Innovation process - T-WIWI-110987 739 6.353. Seminar: Governance, Risk & Compliance - T-INFO-102047 740 6.355. Seminar: Governance, Risk & Compliance - T-INFO-102047 740 6.355. Service Innovation - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102849 743 6.358. Signals and Codes - T-INFO-101300 746 6.359. Simulation Game in Energy Economics - T-WIWI-108016 747 6.360. Smart Energy Infrastructure - T-WIWI-107644 748 6.361. Sortize Theory - T-WIWI-107504 749 6.362. Software Architecture and Quality - T-INFO-101381 753	6.341. Selected Issues in Critical Information Infrastructures - T-WIWI-109251	
6.344. Seminar in Eusiness Administration A (Master) - T-WIWI-103474 702 6.345. Seminar in Economic Policy - T-WIWI-102789 715 6.346. Seminar in Economics A (Master) - T-WIWI-103478 716 6.347. Seminar in Informatics B (Master) - T-WIWI-103480 719 6.348. Seminar in Operations Research A (Master) - T-WIWI-109827 725 6.349. Seminar in Operations Research A (Master) - T-WIWI-103481 731 6.350. Seminar in Statistics A (Master) - T-WIWI-103483 734 6.351. Seminar Informatics A - T-INFO-111205 738 6.352. Seminar Methods along the Innovation process - T-WIWI-110987 739 6.353. Seminar Covernance, Risk & Compliance - T-INFO-102047 740 6.355. Service Design Thinking - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102849 743 6.358. Simulation Game in Energy Economics - T-WIWI-108016 747 6.359. Simulation Game in Energy Economics - T-WIWI-108016 744 6.363. Sociotechnical Information Systems Development - T-WIWI-109249 751 6.364. Software Engineering II - T-INFO-101381 753 6.364. Software Engineering II - T-INFO-101307 754 6.363. Sociotechnical Information Systems Development - T-WIWI-109249 751 6.364. Software Engineering I	6.342. Selected Legal Isues of Internet Law - T-INFO-108462	698
6.345. Seminar in Economic Policy - T-WIWI-102789 715 6.346. Seminar in Incommics A (Master) - T-WIWI-103478 716 6.347. Seminar in Informatics B (Master) - T-WIWI-103480 719 6.348. Seminar in Operations Research A (Master) - T-WIWI-109827 725 6.349. Seminar in Statistics A (Master) - T-WIWI-103481 731 6.350. Seminar in Statistics A (Master) - T-WIWI-103483 734 6.351. Seminar Informatics Master - T-INFO-111205 738 6.352. Seminar Methods along the Innovation process - T-WIWI-110987 739 6.354. Seminar: Legal Studies I - T-INFO-111205 738 6.355. Seminar: Legal Studies I - T-INFO-101997 741 6.355. Seminar: Legal Studies I - T-INFO-1012047 740 6.355. Seminar: Legal Studies I - T-INFO-1012047 743 6.357. Service Innovation - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102849 743 6.358. Signals and Codes - T-WIWI-102849 744 6.359. Signals and Codes - T-WIWI-102849 744 6.360. Smart Energy Infrastructure - T-WIWI-108016 747 6.361. Smart Grid Applications - T-WIWI-107504 749 6.362. Social Choice Theory - T-WIWI-102859 750 6.364. Software Lab Parallel Numerics - T-INFO-10	6.343. Semantic Web Technologies - T-WIWI-110848	
6.346. Seminar in Economics A (Master) - T-WIWI-103478 716 6.347. Seminar in Informatics B (Master) - T-WIWI-103480 719 6.348. Seminar in Information Systems (Master) - T-WIWI-109827 725 6.349. Seminar in Operations Research A (Master) - T-WIWI-103481 731 6.350. Seminar Informatics A (T-INFO-104336 734 6.351. Seminar Informatics A t-T-INFO-104336 736 6.352. Seminar Informatics Master - T-INFO-111205 738 6.353. Seminar Methods along the Innovation process - T-WIWI-110987 739 6.355. Seminar: Legal Studies I - T-INFO-101997 741 6.355. Seminar: Legal Studies I - T-INFO-101997 741 6.355. Service Design Thinking - T-WIWI-102641 744 6.359. Signals and Codes - T-INFO-101360 746 6.359. Signals and Codes - T-INFO-101360 744 6.361. Smart Grid Applications - T-WIWI-107644 748 6.362. Social Choice Theory - T-WIWI-102859 750 6.363. Sociotechnical Information Systems Development - T-WIWI-109249 751 6.364. Software Architecture and Quality - T-INFO-101381 753 6.365. Software Development of Modern, Parallel Platforms - T-INFO-101399 754 6.364. Software Product Line Engineering I - T-INFO-101286 756	6.344. Seminar in Business Administration A (Master) - T-WIWI-103474	
6.347. Seminar in Informatics B (Master) - T-WIWI-103480 719 6.348. Seminar in Information Systems (Master) - T-WIWI-109827 725 6.349. Seminar in Operations Research A (Master) - T-WIWI-103481 731 6.350. Seminar in Statistics A (Master) - T-WIWI-103483 734 6.351. Seminar Informatics A - T-INFO-104336 736 6.352. Seminar Informatics Master - T-INFO-101205 738 6.353. Seminar Methods along the Innovation process - T-WIWI-110987 739 6.354. Seminar: Legal Studies 1 - T-INFO-101997 741 6.355. Seminar: Legal Studies 1 - T-INFO-101997 741 6.355. Service Design Thinking - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102849 744 6.358. Signals and Codes - T-INFO-101360 746 6.359. Simulation Game in Energy Economics - T-WIWI-108016 747 6.361. Smart Energy Infrastructure - T-WIWI-107504 749 6.362. Social Choice Theory - T-WIWI-102859 750 6.363. Sociotechnical Information Systems Development - T-WIWI-109249 751 6.364. Software Architecture and Quality - T-INFO-101381 753 6.365. Software Lab Parallel Numerics - T-INFO-101380 756 6	6.345. Seminar in Economic Policy - T-WIWI-102789	715
6.348. Seminar in Information Systems (Master) - T-WIWI-109827 725 6.349. Seminar in Operations Research A (Master) - T-WIWI-103481 731 6.350. Seminar in Statistics A (Master) - T-WIWI-103483 734 6.351. Seminar Informatics A -T-INFO-111205 738 6.352. Seminar Cormatics Master - T-INFO-111205 738 6.353. Seminar: Governance, Risk & Compliance - T-INFO-102047 740 6.355. Seminar: Covernance, Risk & Compliance - T-INFO-102047 740 6.355. Seminar: Legal Studies I - T-INFO-101997 741 6.355. Service Design Thinking - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102849 743 6.359. Simulation Game in Energy Economics - T-WIWI-108016 746 6.359. Simulation Game in Energy Economics - T-WIWI-108016 747 6.361. Smart Grid Applications - T-WIWI-107504 749 6.362. Social Choice Theory - T-WIWI-102859 750 6.363. Sociotechnical Information Systems Development - T-WIWI-109249 751 6.364. Software Product Line Engineering H - T-INFO-101370 754 6.365. Software Development for Modern, Parallel Platforms - T-INFO-101339 754	6.346. Seminar in Economics A (Master) - T-WIWI-103478	716
6.349. Seminar in Operations Research A (Master) - T-WIWI-103481 731 6.350. Seminar in Statistics A (Master) - T-WIWI-103483 734 6.351. Seminar Informatics A - T-INFO-104336 736 6.352. Seminar Informatics Master - T-INFO-111205 738 6.353. Seminar Methods along the Innovation process - T-WIWI-110987 739 6.354. Seminar: Governance, Risk & Compliance - T-INFO-102047 740 6.355. Seminar: Legal Studies I - T-INFO-101997 741 6.356. Service Design Thinking - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102641 744 6.359. Simulation Game in Energy Economics - T-WIWI-108016 747 6.360. Smart Energy Infrastructure - T-WIWI-107464 748 6.361. Smart Grid Applications - T-WIWI-107504 749 6.362. Social Choice Theory - T-WIWI-102859 753 6.363. Sociotechnical Information Systems Development - T-WIWI-109249 751 6.364. Software Architecture and Quality - T-INFO-101381 753 6.365. Software Engineering II - T-INFO-101370 755 6.367. Software Engineering II - T-INFO-101370 755 6.368. Software Product Line Engineering - T-INFO-10107 755 6.367. Software Lab Parallel Numerics - T-INFO-101381 756	6.347. Seminar in Informatics B (Master) - T-WIWI-103480	719
6.350. Seminar in Statistics A (Master) - T-WIWI-103483 .734 6.351. Seminar Informatics A - T-INFO-104336 .736 6.352. Seminar Informatics Master - T-INFO-111205 .738 6.353. Seminar Methods along the Innovation process - T-WIWI-110987 .739 6.354. Seminar: Governance, Risk & Compliance - T-INFO-102047 .740 6.355. Seminar: Legal Studies I - T-INFO-101997 .741 6.356. Service Design Thinking - T-WIWI-102849 .743 6.357. Service Innovation - T-WIWI-102849 .743 6.357. Service Innovation - T-WIWI-102849 .744 6.358. Signals and Codes - T-INFO-101360 .746 6.369. Simulation Game in Energy Economics - T-WIWI-108016 .747 6.360. Smart Energy Infrastructure - T-WIWI-107504 .749 6.362. Social Choice Theory - T-WIWI-102859 .750 6.363. Sociotechnical Information Systems Development - T-WIWI-109249 .751 6.364. Software Architecture and Quality - T-INFO-101381 .753 6.365. Software Lab Parallel Numerics - T-INFO-101078 .755 6.367. Software Lab Parallel Numerics - T-INFO-101370 .755 6.368. Software Product Line Engineering T-INFO-101078 .756 6.370. Software Lab Parallel Numerics - T-INFO-10105988 .756 <tr< td=""><td>6.348. Seminar in Information Systems (Master) - T-WIWI-109827</td><td></td></tr<>	6.348. Seminar in Information Systems (Master) - T-WIWI-109827	
6.351. Seminar Informatics A - T-INFO-104336 736 6.352. Seminar Informatics Master - T-INFO-111205 738 6.353. Seminar Methods along the Innovation process - T-WIWI-110987 739 6.354. Seminar: Governance, Risk & Compliance - T-INFO-102047 740 6.355. Seminar: Legal Studies I - T-INFO-101997 741 6.355. Service Design Thinking - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102641 744 6.358. Signals and Codes - T-INFO-101360 746 6.359. Simulation Game in Energy Economics - T-WIWI-108016 747 6.360. Smart Energy Infrastructure - T-WIWI-107644 748 6.361. Smart Grid Applications - T-WIWI-107504 749 6.362. Social Choice Theory - T-WIWI-102859 750 6.363. Sociotechnical Information Systems Development - T-WIWI-109249 751 6.364. Software Architecture and Quality - T-INFO-101381 753 6.365. Software Development for Modern, Parallel Platforms - T-INFO-101339 754 6.366. Software Engineering II - T-INFO-101070 755 6.367. Software Lab Parallel Numerics - T-INFO-101370 756 6.368. Software Regineering II - T-INFO-101256 760 6.370. Software Evolution - T-INFO-101256 756 6.370. Softw	6.349. Seminar in Operations Research A (Master) - T-WIWI-103481	731
6.352. Seminar Informatics Master - T-INFO-111205 738 6.353. Seminar Methods along the Innovation process - T-WIWI-110987 739 6.354. Seminar: Governance, Risk & Compliance - T-INFO-102047 740 6.355. Seminar: Legal Studies I - T-INFO-101997 741 6.356. Service Design Thinking - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102641 744 6.358. Signals and Codes - T-INFO-101360 746 6.359. Simulation Game in Energy Economics - T-WIWI-108016 747 6.360. Smart Energy Infrastructure - T-WIWI-107504 749 6.362. Social Choice Theory - T-WIWI-102859 750 6.363. Sociotechnical Information Systems Development - T-WIWI-109249 751 6.364. Software Architecture and Quality - T-INFO-101381 753 6.365. Software Development for Modern, Parallel Platforms - T-INFO-101339 754 6.366. Software Lab Parallel Numerics - T-INFO-105988 756 6.367. Software Lab Parallel Numerics - T-INFO-101370 755 6.367. Software Quality Management - T-WIWI-102895 758 6.370. Software Lab Parallel Numerics - T-INFO-111017 757 6.369. Software Quality Management - T-WIWI-102949 758 6.370. Software Evolution - T-INFO-101256 760 <tr< td=""><td>6.350. Seminar in Statistics A (Master) - T-WIWI-103483</td><td>734</td></tr<>	6.350. Seminar in Statistics A (Master) - T-WIWI-103483	734
6.353. Seminar Methods along the Innovation process - T-WIWI-110987 739 6.354. Seminar: Governance, Risk & Compliance - T-INFO-102047 740 6.355. Seminar: Legal Studies I - T-INFO-101997 741 6.355. Service Design Thinking - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102641 744 6.358. Signals and Codes - T-INFO-101360 747 6.369. Simulation Game in Energy Economics - T-WIWI-108016 747 6.360. Smart Energy Infrastructure - T-WIWI-107464 748 6.361. Smart Grid Applications - T-WIWI-107504 749 6.362. Social Choice Theory - T-WIWI-102859 750 6.363. Sociotechnical Information Systems Development - T-WIWI-109249 751 6.364. Software Architecture and Quality - T-INFO-101381 753 6.365. Software Choice Theory - T-INFO-101370 755 6.367. Software Lab Parallel Numerics - T-INFO-105988 756 6.368. Software Product Line Engineering - T-INFO-101370 755 6.369. Software Quality Management - T-WIWI-102895 758 6.370. Software Leolution - T-INFO-101256 760 6.371. Spatial Economics - T-WIWI-102895 758 6.372. Special Topics in Information Systems - T-WIWI-109940 763 6.373. Statistical M	6.351. Seminar Informatics A - T-INFO-104336	
6.354. Seminar: Governance, Risk & Compliance - T-INFO-102047 740 6.355. Seminar: Legal Studies I - T-INFO-101997 741 6.356. Service Design Thinking - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102641 744 6.358. Signals and Codes - T-INFO-101360 746 6.359. Simulation Game in Energy Economics - T-WIWI-108016 747 6.360. Smart Energy Infrastructure - T-WIWI-107504 748 6.361. Smart Grid Applications - T-WIWI-107504 749 6.362. Social Choice Theory - T-WIWI-107504 749 6.363. Sociotechnical Information Systems Development - T-WIWI-109249 751 6.364. Software Architecture and Quality - T-INFO-101381 753 6.365. Software Development for Modern, Parallel Platforms - T-INFO-101339 754 6.368. Software Engineering II - T-INFO-1015988 756 6.370. Software Quality Management - T-WIWI-102895 758 6.371. Spatial Economics - T-INFO-101276 768 6.372. Special Topics in Information Systems - T-WIWI-109940 764 6.373. Software Quality Management - T-WIWI-109940 764 6.374. Stochastic Calculus and Finance - T-WIWI-103129 765 6.375. Stochastic Information Processing - T-INFO-101366 764	6.352. Seminar Informatics Master - T-INFO-111205	738
6.355. Seminar: Legal Studies I - T-INFO-101997 .741 6.356. Service Design Thinking - T-WIWI-102849 .743 6.357. Service Innovation - T-WIWI-102641 .744 6.358. Signals and Codes - T-INFO-101360 .746 6.359. Simulation Game in Energy Economics - T-WIWI-108016 .747 6.360. Smart Energy Infrastructure - T-WIWI-107464 .748 6.361. Smart Grid Applications - T-WIWI-107504 .749 6.362. Social Choice Theory - T-WIWI-102859 .750 6.363. Sociotechnical Information Systems Development - T-WIWI-109249 .751 6.364. Software Architecture and Quality - T-INFO-101381 .753 6.365. Software Development for Modern, Parallel Platforms - T-INFO-101339 .754 6.366. Software Engineering II - T-INFO-101370 .755 6.367. Software Lab Parallel Numerics - T-INFO-1015988 .756 6.370. Software Quality Management - T-WIWI-102895 .758 6.370. Software Quality Management - T-WIWI-102895 .758 6.371. Spatial Economics - T-WIWI-103107 .761 6.372. Special Topics in Information Systems - T-WIWI-109940 .763 6.373. Statistical Modeling of Generalized Regression Models - T-WIWI-103065 .764 6.373. Statistic al Modeling of Generalized Regression Models - T-WIWI-103065 </td <td>6.353. Seminar Methods along the Innovation process - T-WIWI-110987</td> <td>739</td>	6.353. Seminar Methods along the Innovation process - T-WIWI-110987	739
6.356. Service Design Thinking - T-WIWI-102849 743 6.357. Service Innovation - T-WIWI-102641 744 6.358. Signals and Codes - T-INFO-101360 746 6.359. Simulation Game in Energy Economics - T-WIWI-108016 747 6.360. Smart Energy Infrastructure - T-WIWI-107464 748 6.361. Smart Grid Applications - T-WIWI-107504 749 6.362. Social Choice Theory - T-WIWI-102859 750 6.363. Sociotechnical Information Systems Development - T-WIWI-109249 751 6.364. Software Architecture and Quality - T-INFO-101381 753 6.365. Software Development for Modern, Parallel Platforms - T-INFO-101339 754 6.366. Software Engineering II - T-INFO-101370 755 6.367. Software Lab Parallel Numerics - T-INFO-105988 756 6.368. Software Quality Management - T-WIWI-102895 758 6.370. Software Quality Management - T-WIWI-102895 758 6.371. Spatial Economics - T-WIWI-1017 757 6.363. Software Quality Management - T-WIWI-102895 760 6.371. Spatial Economics - T-WIWI-1017 758 6.372. Special Topics in Information Systems - T-WIWI-109940 763 6.373. Statistical Modeling of Generalized Regression Models - T-WIWI-103065 764 6.374	6.354. Seminar: Governance, Risk & Compliance - T-INFO-102047	740
6.357. Service Innovation - T-WIWI-102641 744 6.358. Signals and Codes - T-INFO-101360 746 6.359. Simulation Game in Energy Economics - T-WIWI-108016 747 6.360. Smart Energy Infrastructure - T-WIWI-107464 748 6.361. Smart Grid Applications - T-WIWI-107504 749 6.362. Social Choice Theory - T-WIWI-102859 750 6.363. Sociotechnical Information Systems Development - T-WIWI-109249 751 6.364. Software Architecture and Quality - T-INFO-101381 753 6.365. Software Development for Modern, Parallel Platforms - T-INFO-101339 754 6.366. Software Engineering II - T-INFO-101578 756 6.367. Software Lab Parallel Numerics - T-INFO-1015988 756 6.368. Software Quality Management - T-WIWI-102895 758 6.370. Software Quality Management - T-WIWI-102895 758 6.370. Software Quality Management - T-WIWI-102895 760 6.371. Spatial Economics - T-WIWI-101256 760 6.373. Statistical Modeling of Generalized Regression Models - T-WIWI-103065 764 6.374. Stochastic Calculus and Finance - T-WIWI-103129 765 6.375. Stochastic Information Processing - T-INFO-101366 767	6.355. Seminar: Legal Studies I - T-INFO-101997	741
6.358. Signals and Codes - T-INFO-101360 746 6.359. Simulation Game in Energy Economics - T-WIWI-108016 747 6.360. Smart Energy Infrastructure - T-WIWI-107464 748 6.361. Smart Grid Applications - T-WIWI-107504 749 6.362. Social Choice Theory - T-WIWI-102859 750 6.363. Sociotechnical Information Systems Development - T-WIWI-109249 751 6.364. Software Architecture and Quality - T-INFO-101381 753 6.365. Software Development for Modern, Parallel Platforms - T-INFO-101339 754 6.366. Software Engineering II - T-INFO-101370 755 6.367. Software Lab Parallel Numerics - T-INFO-105988 756 6.368. Software Product Line Engineering - T-INFO-111017 757 6.369. Software Quality Management - T-WIWI-102895 758 6.370. Software Evolution - T-INFO-101256 760 6.371. Spatial Economics - T-WIWI-103107 761 6.372. Special Topics in Information Systems - T-WIWI-109940 763 6.373. Statistical Modeling of Generalized Regression Models - T-WIWI-103065 764 6.374. Stochastic Calculus and Finance - T-WIWI-103129 765 6.375. Stochastic Information Processing - T-INFO-101366 767		
6.359. Simulation Game in Energy Economics - T-WIWI-1080167476.360. Smart Energy Infrastructure - T-WIWI-1074647486.361. Smart Grid Applications - T-WIWI-1075047496.362. Social Choice Theory - T-WIWI-1028597506.363. Sociotechnical Information Systems Development - T-WIWI-1092497516.364. Software Architecture and Quality - T-INFO-1013817536.365. Software Development for Modern, Parallel Platforms - T-INFO-1013397546.366. Software Engineering II - T-INFO-1013707556.367. Software Lab Parallel Numerics - T-INFO-1059887566.368. Software Product Line Engineering - T-INFO-1110177576.369. Software Quality Management - T-WIWI-1028957586.370. Software Evolution - T-INFO-1012567606.371. Spatial Economics - T-WIWI-1031077616.373. Statistical Modeling of Generalized Regression Models - T-WIWI-1030657646.374. Stochastic Calculus and Finance - T-WIWI-1031297656.375. Stochastic Information Processing - T-INFO-101366767	6.357. Service Innovation - T-WIWI-102641	744
6.360. Smart Energy Infrastructure - T-WIWI-1074647486.361. Smart Grid Applications - T-WIWI-1075047496.362. Social Choice Theory - T-WIWI-1028597506.363. Sociotechnical Information Systems Development - T-WIWI-1092497516.364. Software Architecture and Quality - T-INFO-1013817536.365. Software Development for Modern, Parallel Platforms - T-INFO-1013397546.366. Software Engineering II - T-INFO-1013707556.367. Software Lab Parallel Numerics - T-INFO-10159887566.368. Software Product Line Engineering - T-INFO-1110177576.369. Software Quality Management - T-WIWI-1028957586.370. Software-Evolution - T-INFO-1012567606.371. Spatial Economics - T-WIWI-1031077616.373. Statistical Modeling of Generalized Regression Models - T-WIWI-1030657646.374. Stochastic Calculus and Finance - T-WIWI-1031297656.375. Stochastic Information Processing - T-INFO-101366767		
6.361. Smart Grid Applications - T-WIWI-1075047496.362. Social Choice Theory - T-WIWI-1028597506.363. Sociotechnical Information Systems Development - T-WIWI-1092497516.364. Software Architecture and Quality - T-INFO-1013817536.365. Software Development for Modern, Parallel Platforms - T-INFO-1013397546.366. Software Engineering II - T-INFO-1013707556.367. Software Lab Parallel Numerics - T-INFO-1059887566.368. Software Product Line Engineering - T-INFO-1110177576.369. Software Quality Management - T-WIWI-1028957586.370. Software-Evolution - T-INFO-1012567606.371. Spatial Economics - T-WIWI-1031077616.372. Special Topics in Information Systems - T-WIWI-1099407636.373. Statistical Modeling of Generalized Regression Models - T-WIWI-1030657646.374. Stochastic Calculus and Finance - T-WIWI-1031297656.375. Stochastic Information Processing - T-INFO-101366767	6.359. Simulation Game in Energy Economics - T-WIWI-108016	747
6.362. Social Choice Theory - T-WIWI-1028597506.363. Sociotechnical Information Systems Development - T-WIWI-1092497516.364. Software Architecture and Quality - T-INFO-1013817536.365. Software Development for Modern, Parallel Platforms - T-INFO-1013397546.366. Software Engineering II - T-INFO-1013707556.367. Software Lab Parallel Numerics - T-INFO-1059887566.368. Software Product Line Engineering - T-INFO-1110177576.369. Software Quality Management - T-WIWI-1028957586.370. Software-Evolution - T-INFO-1012567606.371. Spatial Economics - T-WIWI-1031077616.372. Special Topics in Information Systems - T-WIWI-1099407636.374. Statistical Modeling of Generalized Regression Models - T-WIWI-1030657646.375. Stochastic Information Processing - T-INFO-101366767		
6.363. Sociotechnical Information Systems Development - T-WIWI-109249.7516.364. Software Architecture and Quality - T-INFO-101381.7536.365. Software Development for Modern, Parallel Platforms - T-INFO-101339.7546.366. Software Engineering II - T-INFO-101370.7556.367. Software Lab Parallel Numerics - T-INFO-105988.7566.368. Software Product Line Engineering - T-INFO-111017.7576.369. Software Quality Management - T-WIWI-102895.7586.370. Software-Evolution - T-INFO-101256.7606.371. Spatial Economics - T-WIWI-103107.7616.372. Special Topics in Information Systems - T-WIWI-109940.7636.374. Statistical Modeling of Generalized Regression Models - T-WIWI-103065.7646.375. Stochastic Information Processing - T-INFO-101366.767	6.361. Smart Grid Applications - T-WIWI-107504	749
6.364. Software Architecture and Quality - T-INFO-101381.7536.365. Software Development for Modern, Parallel Platforms - T-INFO-101339.7546.366. Software Engineering II - T-INFO-101370.7556.367. Software Lab Parallel Numerics - T-INFO-105988.7566.368. Software Product Line Engineering - T-INFO-111017.7576.369. Software Quality Management - T-WIWI-102895.7586.370. Software-Evolution - T-INFO-101256.7606.371. Spatial Economics - T-WIWI-103107.7616.372. Special Topics in Information Systems - T-WIWI-109940.7636.373. Statistical Modeling of Generalized Regression Models - T-WIWI-103065.7646.374. Stochastic Calculus and Finance - T-WIWI-103129.7656.375. Stochastic Information Processing - T-INFO-101366.767	6.362. Social Choice Theory - T-WIWI-102859	750
6.365. Software Development for Modern, Parallel Platforms - T-INFO-101339.7546.366. Software Engineering II - T-INFO-101370.7556.367. Software Lab Parallel Numerics - T-INFO-105988.7566.368. Software Product Line Engineering - T-INFO-111017.7576.369. Software Quality Management - T-WIWI-102895.7586.370. Software-Evolution - T-INFO-101256.7606.371. Spatial Economics - T-WIWI-103107.7616.372. Special Topics in Information Systems - T-WIWI-109940.7636.373. Statistical Modeling of Generalized Regression Models - T-WIWI-103065.7646.374. Stochastic Calculus and Finance - T-WIWI-103129.7656.375. Stochastic Information Processing - T-INFO-101366.767		
6.366. Software Engineering II - T-INFO-101370 .755 6.367. Software Lab Parallel Numerics - T-INFO-105988 .756 6.368. Software Product Line Engineering - T-INFO-111017 .757 6.369. Software Quality Management - T-WIWI-102895 .758 6.370. Software-Evolution - T-INFO-101256 .760 6.371. Spatial Economics - T-WIWI-103107 .761 6.372. Special Topics in Information Systems - T-WIWI-109940 .763 6.373. Statistical Modeling of Generalized Regression Models - T-WIWI-103065 .764 6.374. Stochastic Calculus and Finance - T-WIWI-103129 .765 6.375. Stochastic Information Processing - T-INFO-101366 .767		
6.367. Software Lab Parallel Numerics - T-INFO-105988 756 6.368. Software Product Line Engineering - T-INFO-111017 757 6.369. Software Quality Management - T-WIWI-102895 758 6.370. Software-Evolution - T-INFO-101256 760 6.371. Spatial Economics - T-WIWI-103107 761 6.372. Special Topics in Information Systems - T-WIWI-109940 763 6.373. Statistical Modeling of Generalized Regression Models - T-WIWI-103065 764 6.374. Stochastic Calculus and Finance - T-WIWI-103129 765 6.375. Stochastic Information Processing - T-INFO-101366 767		
6.368. Software Product Line Engineering - T-INFO-111017 757 6.369. Software Quality Management - T-WIWI-102895 758 6.370. Software-Evolution - T-INFO-101256 760 6.371. Spatial Economics - T-WIWI-103107 761 6.372. Special Topics in Information Systems - T-WIWI-109940 763 6.373. Statistical Modeling of Generalized Regression Models - T-WIWI-103065 764 6.374. Stochastic Calculus and Finance - T-WIWI-103129 765 6.375. Stochastic Information Processing - T-INFO-101366 767		
6.369. Software Quality Management - T-WIWI-102895 758 6.370. Software-Evolution - T-INFO-101256 760 6.371. Spatial Economics - T-WIWI-103107 761 6.372. Special Topics in Information Systems - T-WIWI-109940 763 6.373. Statistical Modeling of Generalized Regression Models - T-WIWI-103065 764 6.374. Stochastic Calculus and Finance - T-WIWI-103129 765 6.375. Stochastic Information Processing - T-INFO-101366 767		
6.370. Software-Evolution - T-INFO-1012567606.371. Spatial Economics - T-WIWI-1031077616.372. Special Topics in Information Systems - T-WIWI-1099407636.373. Statistical Modeling of Generalized Regression Models - T-WIWI-1030657646.374. Stochastic Calculus and Finance - T-WIWI-1031297656.375. Stochastic Information Processing - T-INFO-101366767	· ·	
6.371. Spatial Economics - T-WIWI-103107.7616.372. Special Topics in Information Systems - T-WIWI-109940.7636.373. Statistical Modeling of Generalized Regression Models - T-WIWI-103065.7646.374. Stochastic Calculus and Finance - T-WIWI-103129.7656.375. Stochastic Information Processing - T-INFO-101366.767		
6.372. Special Topics in Information Systems - T-WIWI-1099407636.373. Statistical Modeling of Generalized Regression Models - T-WIWI-1030657646.374. Stochastic Calculus and Finance - T-WIWI-1031297656.375. Stochastic Information Processing - T-INFO-101366767		
6.373. Statistical Modeling of Generalized Regression Models - T-WIWI-103065		
6.374. Stochastic Calculus and Finance - T-WIWI-1031297656.375. Stochastic Information Processing - T-INFO-101366767		
6.375. Stochastic Information Processing - T-INFO-101366767		
-		
6.376. Strategic Finance and Technoloy Change - T-WIWI-110511768	-	
6.377. Strategic Foresight China - T-WIWI-110986		
6.378. Strategic Management of Information Technology - T-WIWI-102669		
6.379. Strategy and Management Theory: Developments and "Classics" - T-WIWI-106190		
6.380. Subdivision Algorithms - T-INFO-103550	-	
6.381. Subdivision Algorithms - T-INFO-103551774	-	
6.382. Supplement Enterprise Information Systems - T-WIWI-110346		
6.383. Supply Chain Management in the Automotive Industry - T-WIWI-102828		
6.384. Supply Chain Management with Advanced Planning Systems - T-WIWI-102763		
6.385. Symmetric Encryption - T-INFO-101390	6.385. Symmetric Encryption - T-INFO-101390	779

6.386. Tax Law I - T-INFO-101315	
6.387. Tax Law II - T-INFO-101314	
6.388. Technologies for Innovation Management - T-WIWI-102854	
6.389. Technology Assessment - T-WIWI-102858	
6.390. Telecommunication and Internet Economics - T-WIWI-102713	
6.391. Telecommunications Law - T-INFO-101309	
6.392. Telematics - T-INFO-101338	
6.393. Testing Digital Systems I - T-INFO-101388	
6.394. Testing Digital Systems II - T-INFO-105936	
6.395. The negotiation of open innovation - T-WIWI-110867	
6.396. Topics in Experimental Economics - T-WIWI-102863	
6.397. Trademark and Unfair Competition Law - T-INFO-101313	
6.398. Transport Economics - T-WIWI-100007	
6.399. Ubiquitous Computing - T-INFO-101326	
6.400. Valuation - T-WIWI-102621	
6.401. Visualization - T-INFO-101275	
6.402. Wearable Robotic Technologies - T-INFO-106557	
6.403. Web App Programming for Finance - T-WIWI-110933	
6.404. Web Applications and Service-Oriented Architectures (II) - T-INFO-101271	799
6.405. Web Science - T-WIWI-103112	800
6.406. Workshop Business Wargaming - Analyzing Strategic Interactions - T-WIWI-106189	
6.407. Workshop Current Topics in Strategy and Management - T-WIWI-106188	804

1 General information

Welcome to the new module handbook of your study program! We are delighted that you have decided to study at the KIT Department of Economics and Management and wish you a good start into the new semester! In the following we would like to give you a short introduction to the most important terms and rules that are important in connection with the choice of modules, courses and examinations.

1.1 Structural elements

The program exists of several **subjects** (e.g. business administration, economics, operations research). Every subject is split into **modules** and every module itself consists of one or more interrelated **module component exams**. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are **obligatory**. According to the interdisciplinary character of the program, a great variety of **individual specialization and deepening possibilities** exists for a large number of modules. This enables the student to customize content and time schedule of the program according to personal needs, interest and job perspective. The **module handbook** describes the modules belonging to the program. It describes particularly:

- the structure of the modules
- the extent (in CP),
- the dependencies of the modules,
- the learning outcomes,
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the **course catalog**, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

1.2 Begin and completion of a module

Each module and each examination can only be selected once. The decision on the assignment of an examination to a module (if, for example, an examination in several modules is selectable) is made by the student at the moment when he / she is registered for the appropriate examination. A module is completed or passed when the module examination is passed (grade 4.0 or better). For modules in which the module examination is carried out over several partial examinations, the following applies: The module is completed when all necessary module partial examinations have been passed. In the case of modules which offer alternative partial examinations, the module examination is concluded with the examination with which the required total credit points are reached or exceeded. The module grade, however, is combined with the weight of the predefined credit points for the module in the overall grade calculation.

1.3 Module versions

It is not uncommon for modules to be revised due to, for example, new courses or cancelled examinations. As a rule, a new module version is created, which applies to all students who are new to the module. On the other hand, students who have already started the module enjoy confidence and remain in the old module version. These students can complete the module on the same conditions as at the beginning of the module (exceptions are regulated by the examination committee). The date of the student's "binding declaration" on the choice of the module in the sense of §5(2) of the Study and Examination Regulation is decisive. This binding declaration is made by registering for the first examination in this module.

In the module handbook, all modules are presented in their current version. The version number is given in the module description. Older module versions can be accessed via the previous module handbooks in the archive at http://www.wiwi.kit.edu/Archiv_MHB.php.

1.4 General and partial examinations

Module examinations can be either taken in a general examination or in partial examinations. If the module examination is offered as a general examination, the entire learning content of the module will be examined in a single examamination. If the module examination is subdivided into partial examinations, the content of each course will be examined in corresponding partial examinations. Registration for examinations can be done online at the campus management portal. The following functions can be accessed on https://campus.studium.kit.edu/:

- Register/unregister for examinations
- Check for examination results
- Create transcript of records

For further and more detailed information, https://studium.kit.edu/Seiten/FAQ.aspx.

1.5 Types of exams

Exams are split into written exams, oral exams and alternative exam assessments. Exams are always graded. Non exam assessments can be repeated several times and are not graded.

Caution: exam type dependent on further pandemic developments

Due to the current situation, online formats are also available for examinations that are typically offered as **presence examinations**, depending on the circumstances.

All assessments that are announced in the modules as a written exam (written exam/sP according to SPO § 4 Abs. 2, Pkt. 1) can therefore also be offered as an alternative exam assessment/PLaA (according to SPO § 4 Abs. 2, Pkt. 3) depending on further pandemic developments. And vice versa. As alternative examination formats, **a**) **online examinations with video supervision** (sP) and optionally a face-to-face examination in the same examination period are offered. Or **b**) the **Online Open Book exam** (PLaA) format.

This option applies to all modules and assessments listed in the module handbook, regardless of whether or not corresponding references are already made to them there. It is also at the discretion of the responsible examiners whether they allow a 'free shot' for their examination when determining the type of examination.

1.6 Repeating exams

Principally, a failed written exam, oral exam or alternative exam assessment can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. A request for a second repetition has to be made in written form to the examination committee two months after loosing the examination claim. A counseling interview is mandatory.

For further information see http://www.wiwi.kit.edu/hinweiseZweitwdh.php.

1.7 Examiners

The examination committee has appointed the KIT examiners and lecturers listed in the module handbook for the modules and their courses as examiners for the courses they offer.

1.8 Additional accomplishments

Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam. Additional accomplishments with at most 30 CP may appear additionally in the certificate.

1.9 Further information

For current information about studying at the KIT Department of Economics and Management, please visit our website www.wiwi.kit.edu as well as Instagram, LinkedIn, and YouTube. Please also see current notices and announcements for students at: https://www.wiwi.kit.edu/studium.php.

Information around the legal and official framework of the study program can be found in the respective study and examination regulations of your study program. These are available under the Official Announcements of KIT (http://www.sle.kit.edu/amtlicheBekanntmachungen.php).

More detailed information about the legal and general conditions of the program can be found in the examination regulation of the program (http://www.sle.kit.edu/amtlicheBekanntmachungen.php).

1.10 Contact persons

for Bachelor students

Personal consultation: KIT Department of Informatics, Informatics Study Program Service Informatics Building 50.34, EG, Rooms 001.2/.3 bachelor@wirtschaftsinformatik.kit.edu

editorial responsibility: Lena Coerdt, KIT Department of Informatics Phone: +49 721 608-48893 modulhandbuch@informatik.kit.edu

for master students

Personal consultation: KIT Department of Economics and Management, Examination Office Gebäude am Kronenplatz Building 05.20, 3rd floor, Room 3C-05 master@wirtschaftsinformatik.kit.edu

editorial responsibility: Dr. André Wiesner, KIT Department of Economics and Management Phone: +49 721 608-44061 modul@wiwi.kit.edu

2 Study plan

The Master's programme in Information Systems has a standard duration of four semesters and comprises 120 credit points. Depending on personal interests and goals, the specialist knowledge acquired in the Bachelor's programme can be expanded and deepened within the scope of the study plan.

Figure 2 shows the subject and module structure with the allocation of credit points (LP) and, as an example, a possible distribution of modules over the semesters.

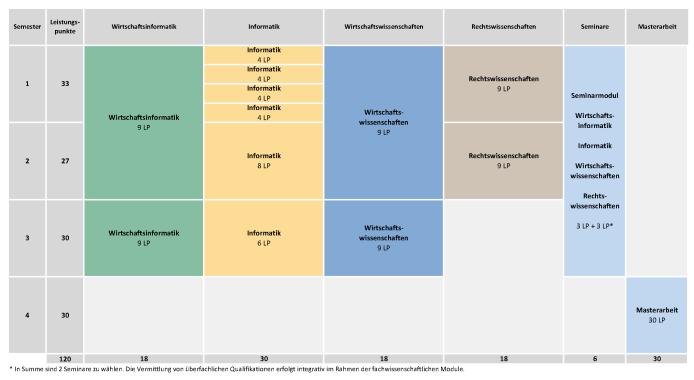


Figure 2: Structure of the Master's programme in Information Systems (german)

Within the scope of the master's programme, modules from the subjects of Information Systems, Informatics, Economics and Law are to be completed and a master's thesis is to be written.

In the subject Informatics, modules with a total volume of 30 credit points are to be taken. In the remaining subjects Information Systems, Economics and Law, modules with a total of 18 credit points must be proven.

In the subjects Information Systems, Informatics, Economics and Management and Law, two seminars of 3 LP each must be completed. The seminars have to be chosen from different subjects.

It is up to the individual study plan (taking into account the relevant requirements in the study and examination regulations as well as any module regulations) in which subject semester the selected module examinations are started or completed. However, it is recommended that all other academic achievements of the Master's examination be proven before the start of the Master's thesis.

All modules including options within the modules are described in the module handbook. WiWi seminars that can be attended as part of the seminar modules will be published on the Wiwi portal at https://portal.wiwi.kit.edu/Seminare.

3 Qualification goals

The KIT graduates of the interdisciplinary, four-semester Master's program in Information Systems have an in-depth researchoriented expertise in Information Systems and the related disciplines of Informatics, Economics and Law. This specialist knowledge is supplemented by subject-independent competences that can be applied across several disciplines. Depending on their profile, their qualifications are particularly suitable for interdisciplinary activities as IT managers, management consultants, technology entrepreneurs, process managers, company founders and for a further scientific career (scientist).

KIT business IT specialists are characterized by their interdisciplinary methodological competence and their innovative ability in shaping the digital transformation of business and society.

By combining their knowledge and competencies, they are able to independently recognize economic and information technology conditions as well as innovative development potentials for the digitization of processes, products and services and to implement them within the legal framework.

KIT business IT specialists design and develop interdisciplinary information goods and information systems from a socio-technical perspective with the aim of creating social and economic value through the digitisation of economy and society.

They are able to analyse and structure complex subject-relevant problems and requirements and develop tailor-made solutions and options for action.

They know how to identify the advantages and disadvantages of existing processes, models, technologies and approaches, compare them with alternatives, evaluate them critically and transfer them to new areas of application.

According to their needs, they can also combine, adapt or independently develop new solutions and implement them using innovative information and communication technologies. They can make and justify their decisions in a scientifically sound manner, taking into account social and ethical aspects.

They know how to critically interpret, validate, document and present the results obtained.

Graduates will be able to communicate with representatives at a scientific level and take on outstanding responsibility in a team.

4 Field of study structure

Mandatory	
Master Thesis	30 CR
Information Systems	18 CR
Informatics	30 C R
Economics and Management	18 CR
Law	18 CR
Seminars	6 CR

4.1 Master Thesis

Mandatory		
M-WIWI-104833	Module Master Thesis	30 C R

4.2 Information Systems

Election block: Info	ormation Systems ()	
M-WIWI-104814	Information Systems: Analytical and Interactive Systems	9 C R
M-WIWI-104812	Information Systems: Engineering and Transformation	9 C R
M-WIWI-104813	Information Systems: Internet-based Markets and Services	9 C R

Credits 30

Credits 18

4.3 Informatics

Credits 30

Election block: Op	tional Modules Informatics ()	
M-INFO-103046	Access Control Systems: Foundations and Practice	5 CR
M-INFO-100795	Algorithm Engineering	5 CR
M-INFO-101173	Algorithms II	6 CR
M-INFO-102093	Algorithms for Ad-Hoc and Sensor Networks	5 CR
M-INFO-100031	Algorithms for Routing	5 CR
M-INFO-102094	Algorithms for Visualization of Graphs	5 CR
M-INFO-100797	Algorithms in Cellular Automata	5 CR
M-INFO-102110	Computational Geometry	6 CR
M-INFO-100762	Algorithmic Graph Theory	5 CR
M-INFO-100754	Computational Cartography	5 CR
M-INFO-102400	Algorithmic Methods for Network Analysis	5 CR
M-INFO-100768	Big Data Analytics	5 CR
M-INFO-102773	Big Data Analytics 2	3 CR
M-INFO-102226	Applied Differential Geometry	5 CR
M-INFO-103294	Wearable Robotic Technologies	4 CR
M-WIWI-105366	Artificial Intelligence	9 CR
M-INFO-104447	Automated Planning and Scheduling	5 CR
M-INFO-100826	Automated Visual Inspection and Image Processing	6 CR
M-INFO-100764	Accessibility - Assistive Technologies for Visually Impaired Persons	3 CR
M-INFO-100755	Image Data Compression	3 CR
M-INFO-100814	Biologically Inspired Robots	3 CR
M-INFO-102968	Biometric Systems for Person Identification	3 CR
M-INFO-100856	Computer Graphics	6 CR
M-INFO-100810	Computer Vision for Human-Computer Interaction	6 CR
M-WIWI-104403	Critical Digital Infrastructures	9 CR
M-INFO-100739	Data and Storage Management	4 CR
M-INFO-104045	Data Privacy: From Anonymization to Access Control	3 CR
M-INFO-101662	Practical Course: Database Systems	4 CR
M-INFO-100780	Deployment of Database Systems	5 CR
M-INFO-100769	Datamanagement in the Cloud	5 CR
M-INFO-105334	Decentralized Systems: Fundamentals, Modeling, and Applications	5 CR
M-INFO-104099	Deep Learning for Computer Vision	3 CR
M-INFO-104460	Deep Learning and Neural Networks	6 CR
M-INFO-100803	Real-Time Systems	6 CR
M-INFO-100736	Introduction to Video Analysis	3 CR
M-INFO-101885	Energy Informatics 1	5 CR
M-INFO-103044	Energy Informatics 2	5 CR
M-INFO-104381	Decision Procedures with Applications to Software Verification	5 CR
M-INFO-100759	Embedded Systems for Multimedia and Image Processing	3 CR
M-INFO-100798	Empirical Software Engineering	4 CR
M-INFO-100831	Design and Architectures of Embedded Systems (ES2)	3 CR
M-WIWI-101477	Development of Business Information Systems	9 CR
M-INFO-102731	Advanced Data Structures	5 CR
M-INFO-100799	Formal Systems	6 CR
M-INFO-100841	Formal Systems II: Theory	5 CR
M-INFO-100744	Formal Systems II: Application	5 CR
M-INFO-105378	Research Project Autonomous Learning Robots neu	6 CR
M-INFO-105413	Practical Course on Network Security Research	3 CR
M-INFO-100725	Human Brain and Central Nervous System: Anatomy, Information Transfer, Signal Processing,	3 CR
	Neurophysiology and Therapy	

M-INFO-100730	Geometric Optimization	3 CR
M-INFO-100753	Design Principles for Interactive Real-Time Systems	3 CR
M-INFO-100733	Principles of Automatic Speech Recognition	6 CR
M-INFO-100758	Graph Partitioning and Graph Clustering in Theory and Practice	5 CR
M-INFO-100738	Hands-on Bioinformatics Practical	3 CR
M-INFO-100822	Heterogeneous Parallel Computing Systems	3 CR
M-WIWI-104520	Human Factors in Security and Privacy	9 C R
M-INFO-102560	Humanoid Robots - Practical Course	3 C R
M-INFO-100895	Information Processing in Sensor Networks	6 C R
M-INFO-100791	Innovative Concepts for Programming Industrial Robots	4 C R
M-WIWI-101456	Intelligent Systems and Services	9 C R
M-INFO-100747	Integrated Network and Systems Management	4 C R
M-INFO-100732	Interactive Computer Graphics	5 CR
M-INFO-100800	Internet of Everything	4 C R
M-INFO-100749	Introduction to Bioinformatics for Computer Scientists	3 C R
M-INFO-100786	IT-Security Management for Networked Systems	5 C R
M-INFO-100819	Cognitive Systems	6 CR
M-INFO-101575	Computational Complexity Theory, with a View Towards Cryptography	6 CR
M-INFO-100728	Context Sensitive Systems	5 CR
M-INFO-100742	Cryptographic Voting Schemes	3 C R
M-INFO-100837	Curves and Surfaces in CAD I	5 CR
M-INFO-101231	Curves and Surfaces for Geometric Design	5 CR
M-INFO-101213	Curves and Surfaces in CAD III	5 CR
M-INFO-100840	Localization of Mobile Agents	6 CR
M-INFO-100807	Low Power Design	3 CR
M-INFO-100848	Machine Translation	6 CR
M-WIWI-103356	Machine Learning	9 C R
M-INFO-105252	Machine Learning - Basic Methods	5 C R
M-INFO-103154	Multi-dimensional Signal Processing and Image Exploitation with Graphic Cards and Other Manycore-Processors	3 CR
M-INFO-100729	Human Computer Interaction	6 CR
M-INFO-100824	Human-Machine-Interaction in Anthropomatics: Basics	3 C R
M-INFO-100785	Mobile Communication	4 CR
M-INFO-100828	Models of Parallel Processing	5 C R
M-INFO-100741	Model-Driven Software Development	3 C R
M-INFO-100825	Pattern Recognition	3 C R
M-INFO-100812	Meshes and Point Clouds	3 C R
M-INFO-100782	Network Security: Architectures and Protocols	4 CR
M-INFO-100784	Next Generation Internet	4 CR
M-INFO-100830	Optimization and Synthesis of Embedded Systems (ES1)	3 CR
M-INFO-100808	Parallel Computer Systems and Parallel Programming	4 CR
M-INFO-100796	Parallel Algorithms	5 CR
M-INFO-100731	Photorealistic Rendering	5 C R
M-INFO-104164	Access Control Systems Lab	4 CR
M-INFO-104699	Practical Course: Hot Research Topics in Computer Graphics	6 CR
M-INFO-102072	Laboratory Course Algorithm Engineering	6 CR
M-INFO-102807	Practical Course: Analysis of Complex Data Sets	4 C R
M-INFO-103166	Application Security Lab	4 C R
M-INFO-102411	Practical Course Automatic Speech Recognition	3 CR
M-INFO-105495	Practical Course: Biologically Inspired Robots neu	6 CR
M-INFO-105632	Practical Course: Data Science neu	6 CR

M INFO 102050	Prestical Course Data Management and Data Analysia	4.00
M-INFO-103050	Practical Course Data Management and Data Analysis	4 C R
M-INFO-102353	Practical Course Circuit Design with Intel Galileo	3 CR
M-INFO-103138	Lab Course: Natural Language Processing and Software Engineering	5 CR
M-INFO-103047	Practical Course Decentralized Systems and Network Services	4 C R
M-INFO-102570	Practical Course: Digital Design & Test Automation Flow	3 CR
M-INFO-101667	Practical Course: Discrete Freeform Surfaces	6 C R
M-INFO-103506	Lab: Efficient parallel C++	6 CR
M-INFO-103808	Lab: Designing Embedded Systems	4 C R
M-INFO-101631	Lab: Designing Embedded Application-Specific Processors	4 C R
M-INFO-102568	Practical Course Research Project: Hands-on Anthropomatics	8 C R
M-INFO-102661	Practical Course FPGA Programming	3 C R
M-INFO-100724	Practical Course: General-Purpose Computation on Graphics Processing Units	3 CR
M-INFO-101666	Practical Course: Geometric Modeling	3 CR
M-INFO-103302	Lab: Graph Visualization in Practice	5 CR
M-INFO-105384	Praktikum: Graphics and Game Development	6 CR
M-INFO-104254	Practical: Course Engineering Approaches to Software Development	6 CR
M-INFO-103706	Lab: Internet of Things (IoT)	4 CR
M-INFO-103128	Practical Course: Implementation and Evaluation of Advanced Data Mining Approaches for Semi-Structured Data	4 CR
M-INFO-101559	Laboratory in Cryptoanalysis	3 CR
M-INFO-101558	Laboratory in Cryptography	3 CR
M-INFO-104031	Lab: Low Power Design and Embedded Systems	3 C R
M-INFO-101579	Practical Course Model-Driven Software Development	6 CR
M-INFO-103143	Practical Course: Neural Network Exercises	3 CR
M-INFO-102414	Natural Language Dialog Systems	3 CR
M-INFO-101889	Practical Course Applied Telematics	6 CR
M-INFO-101537	Practical Course: Programme Verification	3 CR
M-INFO-102092	Practical Course Protocol Engineering	4 CR
M-INFO-101560	Laboratory in Security	4 CR
M-INFO-103235	Practical Course: Smart Data Analytics	6 CR
M-INFO-103227	Practical Course: Virtual Neurorobotics in the Human Brain Project	3 CR
M-INFO-101567	Practical Course: Visual Computing 2	6 CR
M-INFO-101635	Practical Course: Web Applications and Service-Oriented Architectures (II)	5 CR
M-INFO-104357	Practical Introduction to Hardware Security	6 CR
M-INFO-105037	Research Project (Project, 1st Semester)	10 CR
M-INFO-105038	Research Project (Project, 2nd Semester)	10 CR
M-INFO-100985	Multicore Programming in Practice: Tools, Models, Languages	6 CR
M-INFO-102966	Practical Course Computer Vision for Human-Computer Interaction	6 CR
M-INFO-104072	Lab Course Heterogeneous Computing	6 CR
M-INFO-102383	Project Lab: Image Analysis and Fusion	6 CR
M-INFO-102224	Practical Project Robotics and Automation I (Software)	6 CR
M-INFO-102230	Practical Project Robotics and Automation II (Hardware)	6 CR
M-INFO-101891	Practical Course Software Defined Networking	6 CR
M-INFO-104894	Reinforcement Learning and Neural Networks in Robotics	3 CR
M-INFO-101853	Rationale Splines	5 CR
M-INFO-101857	Rationale Splines	3 CR
M-INFO-100794	Randomized Algorithms	5 CR
M-INFO-100818	Computer Architecture	6 CR
M-INFO-100721	Reconfigurable and Adaptive Systems	3 CR
M-INFO-100850	Reliable Computing I	3 CR
M-INFO-100763	Requirements Engineering	3 CR

M-INFO-102522	Robotics - Practical Course	6 CR
M-INFO-100893	Robotics I - Introduction to Robotics	6 C R
M-INFO-102756	Robotics II: Humanoid Robotics	3 C R
M-INFO-104897	Robotics III - Sensors and Perception in Robotics	3 C R
M-INFO-100820	Medical Robotics	3 C R
M-INFO-102825	Practical SAT Solving	5 CR
M-INFO-105622	Practical SAT Solving (extended) ^{neu}	6 CR
M-INFO-100834	Security	6 CR
M-INFO-100823	Signals and Codes	3 C R
M-INFO-100844	Software Architecture and Quality	3 CR
M-INFO-102998	Software Lab Parallel Numerics	6 C R
M-INFO-100802	Software Development for Modern, Parallel Platforms	3 C R
M-INFO-105471	Software Product Line Engineering	3 C R
M-INFO-100833	Software Engineering II	6 C R
M-INFO-100719	Software-Evolution	3 C R
M-INFO-100829	Stochastic Information Processing	6 C R
M-INFO-100735	Natural Language Processing and Software Engineering	3 C R
M-INFO-100853	Symmetric Encryption First usage possible until 9/30/2022.	3 C R
M-INFO-100801	Telematics	6 CR
M-INFO-100851	Testing Digital Systems I	3 C R
M-INFO-102962	Testing Digital Systems II	3 C R
M-INFO-100789	Ubiquitous Computing	5 C R
M-WIWI-101458	Ubiquitous Computing	9 C R
M-INFO-100839	Fuzzy Sets	6 C R
M-INFO-101863	Subdivision Algorithms	3 C R
M-INFO-101864	Subdivision Algorithms	5 CR
M-INFO-100899	Natural Language Processing and Dialog Modeling	3 C R
M-INFO-100761	Distributed Computing	4 C R
M-INFO-100738	Visualization	5 C R
M-WIWI-105368	Web and Data Science	9 C R
M-INFO-100734	Web Applications and Service-Oriented Architectures (II)	4 C R
M-WIWI-101455	Web Data Management	9 C R

4.4 Economics and Management

Credits 18

Election block: Bus	siness Administration ()	
M-WIWI-105659	Advanced Machine Learning and Data Science neu	9 C R
M-WIWI-101410	Business & Service Engineering	9 C R
M-WIWI-101498	Management Accounting	9 C R
M-WIWI-101510	Cross-Functional Management Accounting	9 C R
M-WIWI-103117	Data Science: Data-Driven Information Systems	9 C R
M-WIWI-103118	Data Science: Data-Driven User Modeling	9 C R
M-WIWI-101647	Data Science: Evidence-based Marketing	9 C R
M-WIWI-104080	Designing Interactive Information Systems	9 C R
M-WIWI-102808	Digital Service Systems in Industry	9 C R
M-WIWI-103720	eEnergy: Markets, Services and Systems	9 C R
M-WIWI-101409	Electronic Markets	9 C R
M-WIWI-101451	Energy Economics and Energy Markets	9 C R
M-WIWI-101452	Energy Economics and Technology	9 C R
M-WIWI-101488	Entrepreneurship (EnTechnon)	9 C R
M-WIWI-101482	Finance 1	9 C R
M-WIWI-101483	Finance 2	9 C R
M-WIWI-101480	Finance 3	9 C R
M-WIWI-101471	Industrial Production II	9 C R
M-WIWI-101412	Industrial Production III	9 C R
M-WIWI-104068	Information Systems in Organizations	9 C R
M-WIWI-101507	Innovation Management	9 C R
M-WIWI-101446	Market Engineering	9 C R
M-WIWI-105312	Marketing and Sales Management	9 C R
M-WIWI-101506	Service Analytics	9 C R
M-WIWI-101503	Service Design Thinking	9 C R
M-WIWI-102754	Service Economics and Management	9 C R
M-WIWI-102806	Service Innovation, Design & Engineering	9 C R
M-WIWI-101448	Service Management	9 C R
M-WIWI-103119	Advanced Topics in Strategy and Management	9 C R
M-WIWI-105661	Data Science: Intelligent, Adaptive, and Learning Information Services neu	9 C R
Election block: Eco	onomics ()	
M-WIWI-101453	Applied Strategic Decisions	9 C R
M-WIWI-101504	Collective Decision Making	9 C R
M-WIWI-101505	Experimental Economics	9 C R
M-WIWI-101478	Innovation and Growth	9 C R
M-WIWI-101514		9 C R
M-WIWI-101500	Microeconomic Theory	9 C R
M-WIWI-101406	Network Economics	9 C R
M-WIWI-101502	Economic Theory and its Application in Finance	9 C R
M-WIWI-105414	Statistics and Econometrics II	9 C R
M-WIWI-101468		9 C R
M-WIWI-101485		9 C R
M-WIWI-101511	Advanced Topics in Public Finance	9 C R
M-WIWI-101496	Growth and Agglomeration	9 C R
	erations Research ()	
M-WIWI-101473		9 C R
M-WIWI-102832	Operations Research in Supply Chain Management	9 C R
M-WIWI-102805		9 C R
M-WIWI-103289	Stochastic Optimization	9 C R
Election block: Sta	tistics ()	

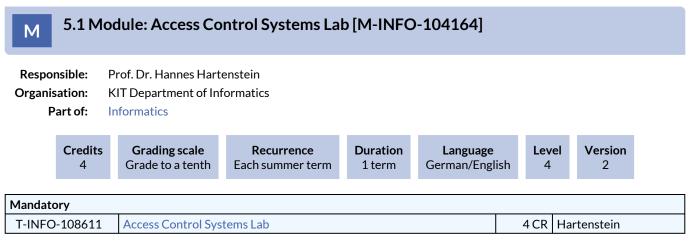
M-WIWI-101637	Analytics and Statistics	9 C R
M-WIWI-101638	Econometrics and Statistics I	9 C R
M-WIWI-101639	Econometrics and Statistics II	9 C R
M-WIWI-105414	Statistics and Econometrics II	9 C R

4.5 Law

Credits 18

Election block: Cor	npulsory Elective Module in Law ()	
M-INFO-104810	European and National Technology Law	9 C R
M-INFO-101242	Governance, Risk & Compliance	9 C R
M-INFO-101217	Public Business Law	9 C R
M-INFO-101216	Private Business Law	9 C R
M-INFO-101215	Intellectual Property Law	9 C R

4.6 Seminars

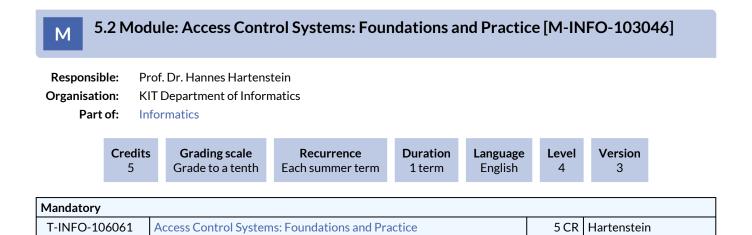

Credits 6

Election notes

In the subjects Information Systems, Informatics, Economics and Management and Law, two seminars of 3 LP each must be completed. The seminars have to be chosen from different subjects.

Election block: Sen	ninars (at most 2 items)	
M-INFO-102822	Seminar Module Informatics	3 C R
M-INFO-101218	Seminar Module Law	3 C R
M-WIWI-104815	Seminar Information Systems	3 C R
M-WIWI-102736	Seminar Module Economic Sciences	3 C R

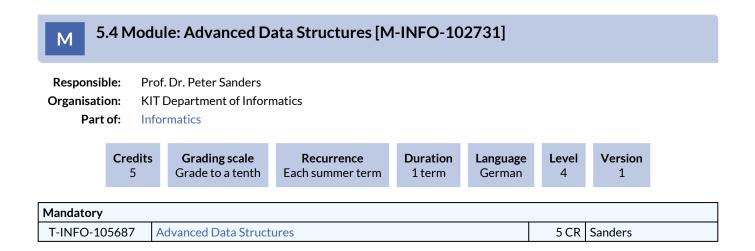
5 Modules

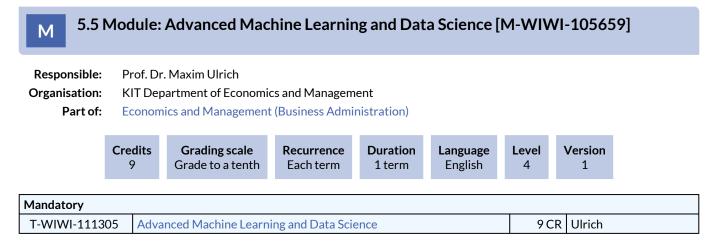

Content

An information security model defines access rights that express for a given system which subjects are allowed to perform which actions on which objects. A system is said to be secure with respect to a given information security model, if it enforces the corresponding access rights. Thus, access control modeling and access control systems represent the fundamental building blocks of secure services, be it on the Web or in the Internet of Everything.

In this master-level course, we thoroughly investigate the evolution of access control models (access control matrix, role-based access control, attribute access control) and describe usage control models as a unified framework for both access control and digital rights management. The students experiment with real-world access control protocols and technologies and thus apply the contents of the lecture "Access Control Systems: Foundations and Practice" in a real-world context.

Workload


Lab Sessions: $6 \times 2h = 12h$ Lab Tasks: $6 \times 10h = 60h$ Lab Reports: $6 \times 4h = 24h$ Buffer: $6 \times 2h = 12h$ Final Presentation: 12h $\Sigma = 120h = 4$ ECTS



5.3 Module: Accessibility - Assistive Technologies for Visually Impaired Persons [M-INFO-100764]

Responsible:Prof. Dr.-Ing. Rainer StiefelhagenOrganisation:KIT Department of InformaticsPart of:Informatics

	Credits 3	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 1
Mandatory							
T-INFO-101301 Accessibility - Assistive Technologies for Visually Impaired Persons					Persons	3 CR	Stiefelhagen

Competence Certificate

The assessment is carried out in form of a written thesis based on the course "Advanced Machine Learning and Data Science".

Competence Goal

Students with good technological knowledge and an affinity for IT applications solve a data science problem using modern machine learning methods. Students learn to organize themselves in a team in a goal-oriented manner and to bring an extensive software project in the field of data science and machine learning to success. In addition, students deepen their data science and machine learning skills. Students of this module are particularly well prepared for management tasks in various data science and machine learning projects.

Prerequisites

see T-WIWI-106193 "Advanced Machine Learning and Data Science".

Content

The course is targeted to students with a major in Data Science and/or Machine Learning. It offers students the opportunity to develop hands-on knowledge on new developments in data science and machine learning.

Recommendation

None

Workload

Total effort for 9 credit points: approx. 270 hours. The total workload for this module is approx. 270 hours (9 credit points). The total number of hours results from the effort for attending the internship events and the independent creation of the software solution, as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.

5.6 Module: Advanced Topics in Public Finance [M-WIWI-101511] Μ

Responsible: Prof. Dr. Berthold Wigger Organisation:

KIT Department of Economics and Management

Part of: **Economics and Management (Economics)**

Election block: Electives (between 1 and 2 items)						
T-WIWI-108711	Basics of German Company Tax Law and Tax Planning	4,5 CR	Gutekunst, Wigger			
T-WIWI-102740	Public Management	4,5 CR	Wigger			
Election block: Supplementary Courses (between 4,5 and 5 credits)						
T-WIWI-111304	Fundamentals of National and International Group Taxation	4,5 CR	Wigger			
T-WIWI-102739	Public Revenues	4,5 CR	Wigger			

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- understands the theory and politics of taxation
- has knowledge in the area of public debt.
- understands efficiency problems of public organizations.
- is able to work on fiscal problems.

Prereauisites

At least one of the courses "Public Management" or "Basics of German Company Tax Law and Tax Planning" is mandatory in the module and must be successfully examined.

Content

As a branch of Economics, Public Finance is concerned with the theory and policy of the public sector and its interrelations with the private sector. It analyzes the economic role of the state from a normative as well as from a positive point of view. The normative view examines efficiency- and equity-oriented motives for government intervention and develops fiscal policy guidelines. The positive view explains the actual behavior of economic agents in public sector affairs.

In the course of the lectures within this module the students achieve knowledge in the areas of public revenues, national and international law of taxation and theory of public sector organizations.

Recommendation

Basic knowledge in the area of public finance and public management is required.

Annotation

The course T-WIWI-102790 "Specific Aspects in Taxation" will no longer be offered in the module as of winter semester 2018/2019.

Students who successfully passed the exam in "Public Management" before the introduction of the module "Advanced Topics in Public Finance" in winter term 2014/15 are allowed to take both courses "Public Revenues" and "Specific Aspects in Taxation".

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

5.7 Module: Advanced Topics in Strategy and Management [M-WIWI-103119]

Responsible:	Prof. Dr. Hagen Lindstädt	
Organisation:	KIT Department of Economics and Management	
Part of:	Economics and Management (Business Administration)	

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	2 terms	German	4	1

Election block: Compulsory Elective Courses (9 credits)						
T-WIWI-106188	Workshop Current Topics in Strategy and Management	3 C R	Lindstädt			
T-WIWI-106189	Workshop Business Wargaming – Analyzing Strategic Interactions	3 C R	Lindstädt			
T-WIWI-106190	Strategy and Management Theory: Developments and "Classics"	3 C R	Lindstädt			

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- are able to analyze business strategies and derive recommendations using appropriate frameworks
- learn to express their position through compelling reasoning in structured discussions
- are qualified to critically examine recent research topics in the field of strategic management
- can derive own conclusions from less structured information by using interdisciplinary knowledge

Prerequisites

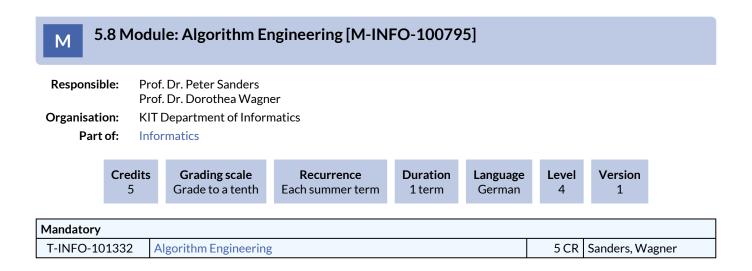
None

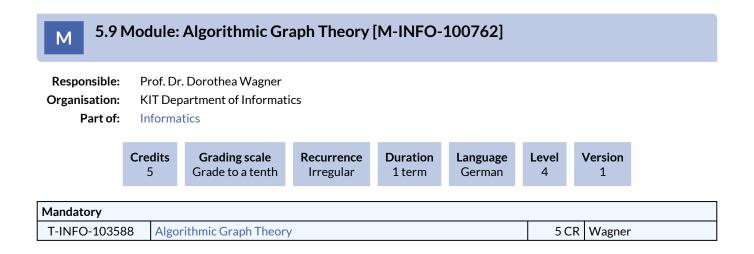
Content

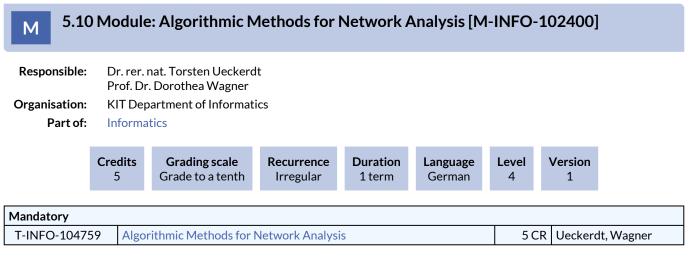
The module is divided into three main topics:

The students

- analyze and discuss a wide range of business strategies on the basis of collectively selected case studies.
- participate in a business wargaming workshop and analyze strategic interactions.
- write a paper about current topics in the field of strategic management theory.

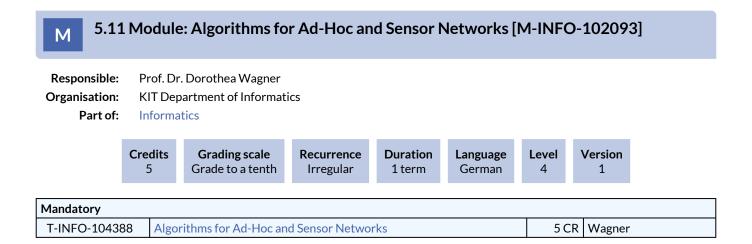

Recommendation

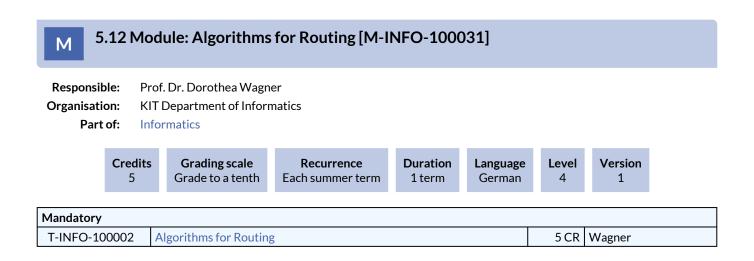

None

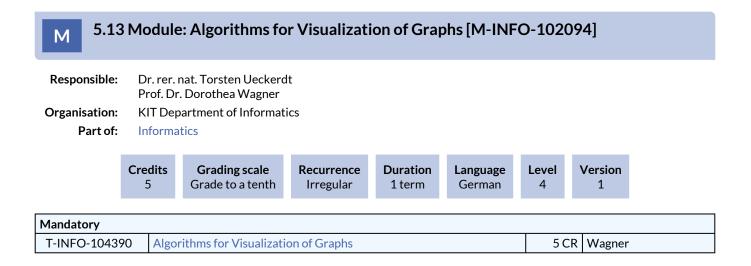

Annotation

This course is admission restricted. After being admitted to one course of this module, the participation at the other courses will be guaranteed.

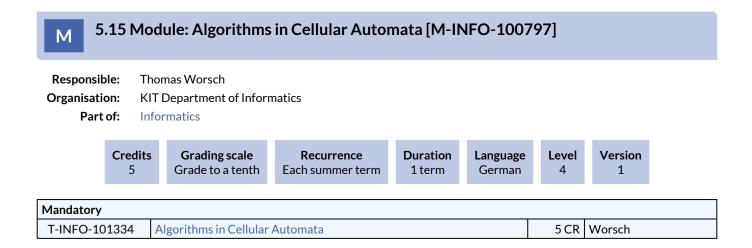
Every course of this module will be at least offered every second term. Thus, it will be possible to complete the module within two terms.







Workload


150 h

M 5.14 Module: Algorithms II [M-INFO-101173]									
Responsible: Prof. Dr. Hartmut Prautzsch Prof. Dr. Peter Sanders Prof. Dr. Dorothea Wagner									
Organisatio	n: K	IT D	epartment of Inform	natics					
Parto	of: In	forn	natics						
		_							
	Credit 6	S	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1	
Mandatory									
T-INFO-102	L02020 Algorithms II				6 CR	Prautzsch,	Sanders		

5.16 Module: Analytics and Statistics [M-WIWI-101637]

Responsible:Prof. Dr. Oliver GrotheOrganisation:KIT Department of Economics and ManagementPart of:Economics and Management (Statistics)

Mandatory T-WIWI-103123 **Advanced Statistics** 4,5 CR Grothe Election block: Supplementary Courses (between 4,5 and 5 credits) T-WIWI-106341 Machine Learning 2 - Advanced Methods 4,5 CR Zöllner T-WIWI-111247 Grothe Mathematics for High Dimensional Statistics 4,5 CR T-WIWI-103124 Multivariate Statistical Methods 4,5 CR Grothe

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

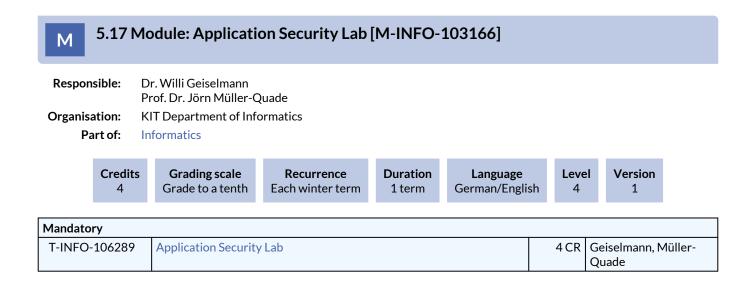
A Student

- Deepens the knowledge of descriptive and inferential statistics.
- Deals with simulation methods.
- Learns basic and advanced methods of statistical analysis of multivariate and high-dimensional data.

Prerequisites

The course "Advanced Statistics" is compulsory.

Content


- Deriving estimates and testing hypotheses
- Stochastic processes
- Multivariate statistics, copulas
- Dependence measures
- Dimension reduction
- High-dimensional methods
- Prediction

Annotation

The planned lectures and courses for the next three years are announced online.

Workload

The total workload for this module is approximately 270 hours.

5.18 Module: Applied Differential Geometry [M-INFO-102226] Μ

Responsible: Prof. Dr. Hartmut Prautzsch Organisation: Part of: Informatics

5

KIT Department of Informatics

Each term

Version Level Language German 4

2

Mandatory			
T-INFO-104546	Applied Differential Geometry	4 CR	Prautzsch
T-INFO-111000	Applied Differential Geometry - Practical	1 CR	Prautzsch

1 term

5.19 Module: Applied Strategic Decisions [M-WIWI-101453] Μ **Responsible:** Prof. Dr. Johannes Philipp Reiß **Organisation:** KIT Department of Economics and Management Part of: **Economics and Management (Economics)** Credits **Grading scale** Recurrence Duration Language Level Version 9 Grade to a tenth Each term 1 term German/English 4 4 Mandatory T-WIWI-102861 4,5 CR Ehrhart, Puppe, Reiß Advanced Game Theory Election block: Supplementary Courses (between 4,5 and 5 credits) T-WIWI-102613 Auction Theory 4,5 CR Ehrhart T-WIWI-102614 Weinhardt **Experimental Economics** 4.5 CR T-WIWI-102622 **Corporate Financial Policy** 4,5 CR Ruckes T-WIWI-102623 4,5 CR Ruckes **Financial Intermediation** T-WIWI-102640 Market Engineering: Information in Institutions 4,5 CR Weinhardt 4,5 CR T-WIWI-102862 Predictive Mechanism and Market Design Reiß T-WIWI-105781 4.5 CR Nieken Incentives in Organizations

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- can model and analyze complex situations of strategic interaction using advanced game theoretic concepts;
- are provided with essential and advanced game theoretic solution concepts on a rigorous level and can apply them to understand real-life problems;
- learn about the experimental method, ranging from designing an economic experiment to data analysis.

Prerequisites

The course "Advanced Game Theory" is obligatory. Exception: The course "Introduction to Game Theory" was completed. Even those who have already successfully proven "Advanced Game Theory" in another master module can take the module. In this case you can choose freely from the rest of the offer. However, this choice can only be made by the examination office of the Department of Economics and Management.

Content

The module provides solid skills in game theory and offers a broad range of game theoretic applications. To improve the understanding of theoretical concepts, it pays attention to empirical evidence as well.

Recommendation

Basic knowledge in game theory is assumed.

Annotation

The course Predictive Mechanism and Market Design is not offered each year.

Workload

The total workload for this module is approximately 270 hours. The exact distribution is made according to the credit points of the courses of the module.

5.20 Module: Artificial Intelligence [M-WIWI-105366]

 Responsible:
 Prof. Dr. York Sure-Vetter

 Organisation:
 KIT Department of Economics and Management

 Part of:
 Informatics

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	2 terms	German/English	4	1

Election block: Compulsory Elective Courses (at least 2 items)					
T-WIWI-102666	Knowledge Discovery	4,5 CR	Färber		
T-WIWI-110848	Semantic Web Technologies	4,5 CR	Käfer		
T-WIWI-110548	Advanced Lab Informatics (Master)	4,5 CR	Professorenschaft des Fachbereichs Informatik		

Competence Certificate

The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- understands the koncepts behind Semantic Web and Linked Data technologies
- develops ontologies to be employed in semantic web-based applications and chooses suitable representation languages,
- is familiar with approaches in the area of knowledge representation and modelling,
- is able to transfer the methods and technologies of semantic web technologies to new application sectors,
- evaluates the potential of semantic web for new application sectors,
- understands the challenges in the areas of Data and system integration on the web is able to develop solutions.
- know the basics of machine learning, data mining and knowledge discovery
- can design, train and evaluate systems that are capable of learning
- carry out knowledge discovery projects, taking into account algorithms, representations and applications.

Prerequisites

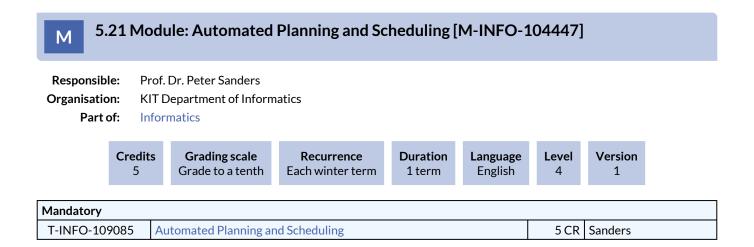
None

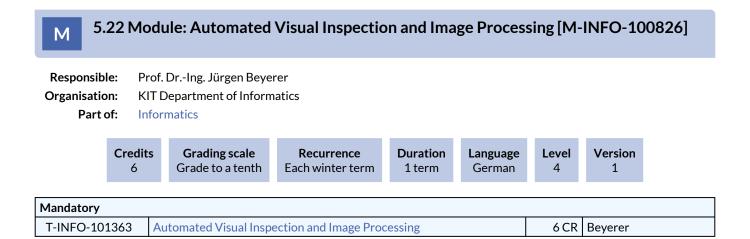
Content

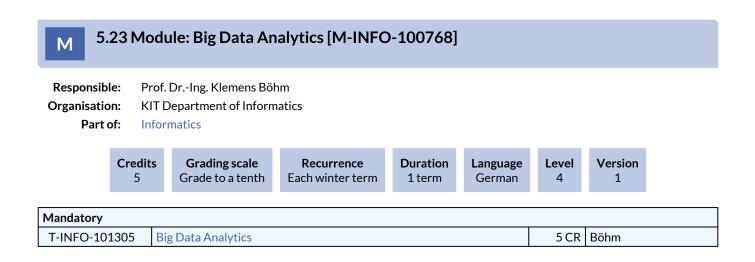
The focus of the module is on Semantic Web Technologies as well as machine learning and data mining methods for knowledge acquisition from large databases.

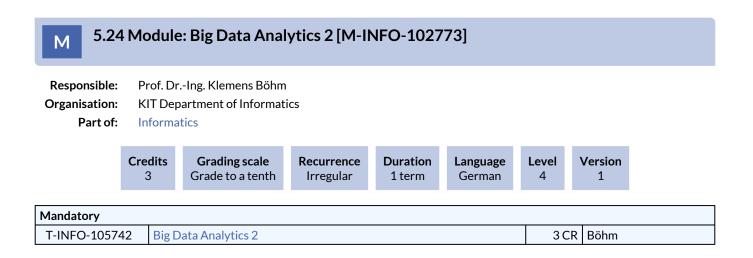
The goal of the semantic web is the meaning (semantics) of data on the web for intelligent systems, e.g. in e-commerce and to make Internet portals usable. The representation of knowledge in the form of RDF and ontologies, the provision of data as Linked Data, as well as the request of data using SPARQL. In this lecture the basics of knowledge representation and processing for the corresponding technologies and application examples are presented.

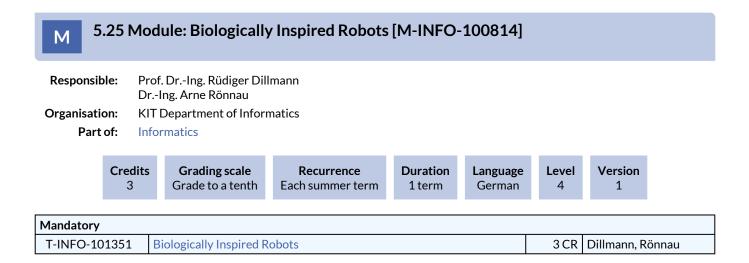
The lecture "Knowledge Discovery" gives an overview of approaches of machine learning and data mining for knowledge extraction from large data sets. These are examined especially with regard to algorithms, applicability to different data representations and the use in real application scenarios.

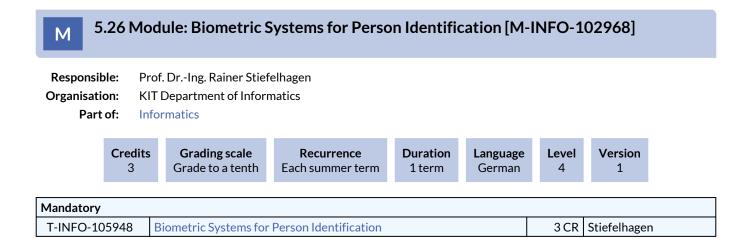

Knowledge Discovery is an established research area with a large community that investigates methods for discovering patterns and regularities in large amounts of data, including unstructured text. A variety of methods exist to extract patterns and provide previously unknown insights. This information can be predictive or descriptive.


The lecture gives an overview of Knowledge Discovery. Specific techniques and methods, challenges and current and future research topics in this research area will be taught.


Contents of the lecture cover the entire machine learning and data mining process with topics on supervised and unsupervised learning and empirical evaluation. Covered learning methods range from classical approaches like decision trees, support vector machines and neural networks to selected approaches from current research. Learning problems considered include feature vector-based learning and text mining.


Workload


The total workload for this module is approximately 270 hours.



M 5.27 Module: Business & Service Engineering [M-WIWI-101410]

Responsible:	Prof. Dr. Christof Weinhardt
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Business Administration)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version	
9	Grade to a tenth	Each term	1 term	German/English	4	5	

Election block: Compulsory Elective Courses (9 credits)						
T-WIWI-102639	Business Models in the Internet: Planning and Implementation	4,5 CR	Weinhardt			
T-WIWI-102848	Personalization and Services	4,5 CR	Sonnenbichler			
T-WIWI-110887	Practical Seminar: Service Innovation	4,5 CR	Satzger			
T-WIWI-102847	Recommender Systems	4,5 CR	Geyer-Schulz			
T-WIWI-102641	Service Innovation	4,5 CR	Satzger			
T-WIWI-109940	Special Topics in Information Systems	4,5 CR	Weinhardt			

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student should

- learn to develop and implement new markets with regards to the technological progresses of information and communication technology and the increasing economic networking
- learn to restructure and develop new business processes in markets under those conditions
- understand service competition as a sustainable competitive strategy and understand the effects of service competition on the design of markets, products, processes and services.
- improve his statistics skills and apply them to appropriate cases
- learn to elaborate solutions in a team

Prerequisites

None

Content

This module addresses the challenges of creating new kinds of products, processes, services, and markets from a service perspective in the context of new developed information and communication technologies and the globalization process. The module describes service competition as a business strategy in the long term that leads to the design of business processes, business models, forms of organization, markets, and competition. This will be shown by actual examples from personalized services, recommender services and social networks.

Recommendation

None

Annotation

All practical Seminars offered at the IM can be chosen for *Special Topics in Information Systems*. Please update yourself on www.iism.kit.edu/im/lehre.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

M 5	.28 Ma	odule: Cognitive S	Systems [M-INFO	-100819]			
Responsible: Prof. Dr. Gerhard Neumann Prof. Dr. Alexander Waibel							
Organisati	on: K	IT Department of Inform	matics				
Part	of: In	formatics					
	Credits 6	s Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 1
Mandatory							
T-INFO-10	1254	Cognitive Systems				6 CR	Neumann, Wai

5.29 Module: Collective Decision Making [M-WIWI-101504]

Responsible:	Prof. Dr. Clemens Puppe
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Economics)

Election block: Compulsory Elective Courses ()				
T-WIWI-102740	Public Management	4,5 CR	Wigger	
T-WIWI-102859	Social Choice Theory	4,5 CR	Puppe	

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

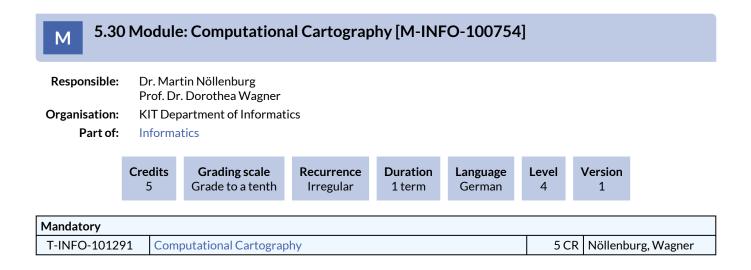
The overall grade of the the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- are able to model practical problems of the public sector and to analyze them with respect to positive and normative questions,
- understand individual incentives and social outcomes of different institutional designs,
- are familiar with the functioning and design of democratic elections and can analyze them with respect to their individual incentives.

Prerequisites

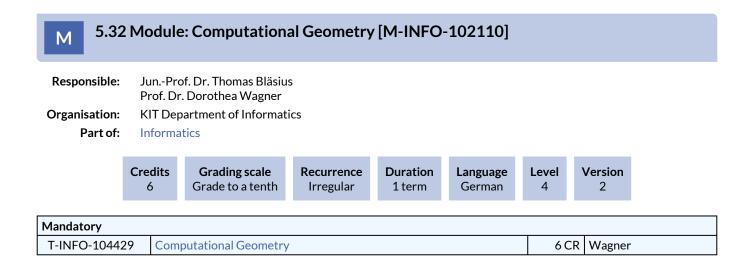

None

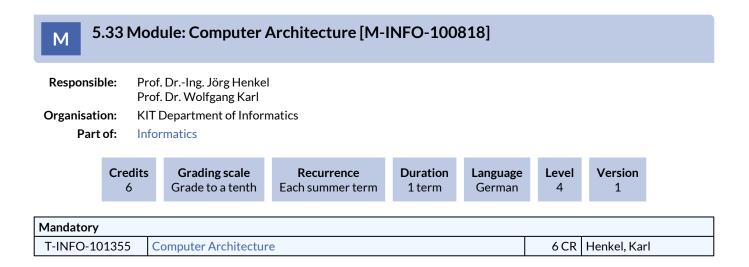
Content

The focus of the module is on mechanisms of public decisions making, including voting and the aggregation of preferences and judgements.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

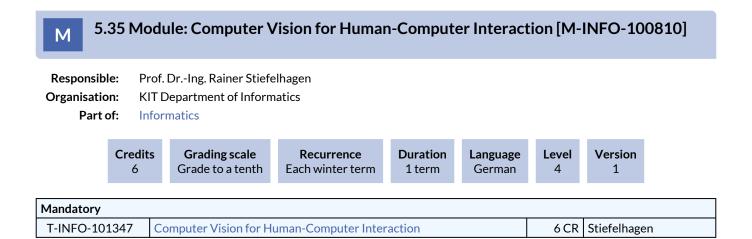

5.31 Module: Computational Complexity Theory, with a View Towards Cryptography [M-INFO-101575]

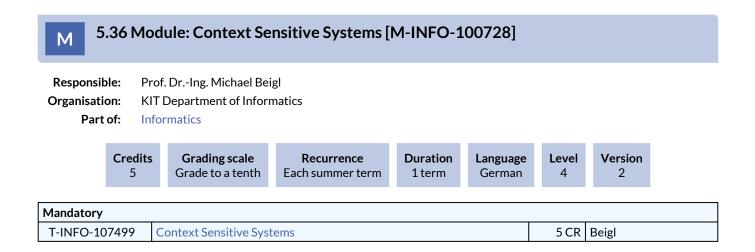

Responsible:Prof. Dr. Jörn Müller-QuadeOrganisation:KIT Department of Informatics

Part of: Informatics

Credits
6Grading scale
Grade to a tenthRecurrence
IrregularDuration
1 termLanguage
GermanLevel
4Version
1

Mandatory				
T-INFO-103014	Computational Complexity Theory, with a View Towards Cryptography	6 CR	Hofheinz, Müller- Quade	




5.34 Module: Computer Graphics [M-INFO-100856]

Responsible:Prof. Dr.-Ing. Carsten DachsbacherOrganisation:KIT Department of InformaticsPart of:Informatics

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
6	Grade to a tenth	Each winter term	1 term	German	4	1

Mandatory					
T-INFO-101393	Computer Graphics	6 CR	Dachsbacher		
T-INFO-104313	Computer Graphics Pass	0 C R	Dachsbacher		

5.37 Module: Critical Digital Infrastructures [M-WIWI-104403]

Responsible:Prof. Dr. Ali SunyaevOrganisation:KIT Department of Economics and ManagementPart of:Informatics

-	edits	Grading scale	Recurrence	Duration	Language	Level	Version
	9	Grade to a tenth	Each term	2 terms	German/English	4	2

Mandatory						
T-WIWI-109248	Critical Information Infrastructures	4,5 CR	Sunyaev			
Election block: Compulsory Elective Courses (at least 9 credits)						
T-WIWI-109246	Digital Health	4,5 CR	Sunyaev			
T-WIWI-110144	Emerging Trends in Digital Health	4,5 CR	Sunyaev			
T-WIWI-110143	Emerging Trends in Internet Technologies	4,5 CR	Sunyaev			
T-WIWI-109249	Sociotechnical Information Systems Development	4,5 CR	Sunyaev			
T-WIWI-109251	Selected Issues in Critical Information Infrastructures	4,5 CR	Sunyaev			

Competence Certificate

The assessment is carried out as partial exams according to § 4 paragraph 2 Nr. 1 – Nr. 3 SPO of the examination regulation of the core course and further single courses of this module, whose sum of credits must meet 9 credits.

The learning control is described in each course. The overall score of the module is made up of the sub-scores weighted with creditpoints and is cut off after the first comma point.

Competence Goal

The students ...

- have foundational knowledge about the design and operation of critical digital infrastructures
- have in-depth methodological knowledge in design science research and related scientific domains
- can distinguish between the challenges and opportunities of critical digital infrastructures in different domains
- can evaluate and improve sociotechnical systems
- combine theoretical and practical contents of the courses in the module to solve existing problems in the domain of critical digital infrastructures

Prerequisites

None

Content

Critical digital infrastructures are sociotechnical systems comprising essential software components and information systems with pivotal impact on individuals, organizations, governments, economies, and society. Critical information infrastructures require careful design, development, and evaluation to ensure reliable, secure, and purposeful operation. This module features a strong focus on different subject areas, including, but not limited to, internet technologies, health care, and information privacy. The lectures in the module introduce students to a domain relevant to critical digital infrastructures and the labs allow to gain hands-on experience in this interesting domain.

Recommendation

The courses in the module may be held in English. Participants should be well versed in written and spoken English. The courses can be visited independently. Participants can start the module in the winter as well as in the summer term.

Programming skills may be required in some courses.

Experience in writing scientific papers is helpful but not required.

Annotation

This new module can be chosen from summer term 2018.

Workload

30 hours per ECTS Total workload for 9 ECTS: approx. 270 hours The exact allocation is made according to the credit points of the courses.

5.38 Module: Cross-Functional Management Accounting [M-WIWI-101510] Μ

Responsible: Prof. Dr. Marcus Wouters Organisation: KIT Department of Economics and Management Part of:

Economics and Management (Business Administration)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	1 term	German/English	4	9

Mandatory						
T-WIWI-102885	Advanced Management Accounting	4,5 CR	Wouters			
Election block: Supplementary Courses (4,5 credits)						
T-WIWI-110179	Advanced Management Accounting 2	4,5 CR	Wouters			
T-WIWI-105777	Business Intelligence Systems	4,5 CR	Mädche, Nadj, Toreini			
T-WIWI-105781	Incentives in Organizations	4,5 CR	Nieken			
T-WIWI-102835	Marketing Strategy Business Game	1,5 CR	Klarmann			
T-WIWI-107720	Market Research	4,5 CR	Klarmann			
T-WIWI-109864	Product and Innovation Management	3 C R	Klarmann			
T-WIWI-102621	Valuation	4,5 CR	Ruckes			
T-WIWI-108651	Extraordinary additional course in the module Cross-Functional Management Accounting	4,5 CR	Wouters			

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students will be able to apply advanced management accounting methods to managerial decision-making problems in marketing, finance, organization and strategy.

Prerequisites

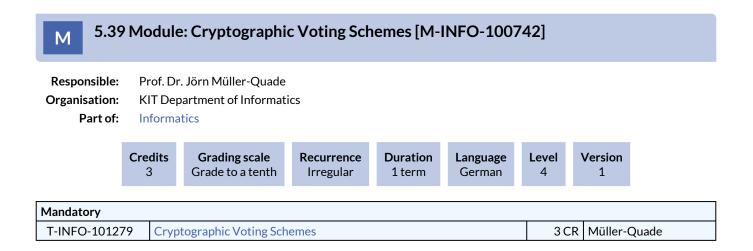
The course "Advanced Management Accounting" is compulsory.

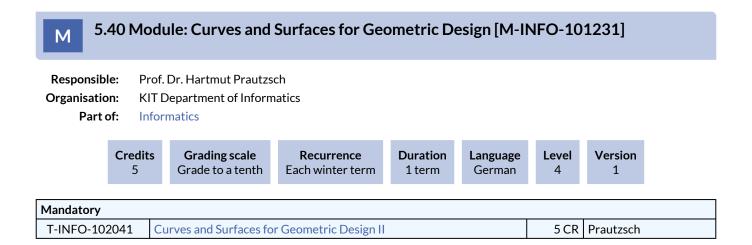
The additional courses can only be chosen after the compulsory course has been completed successfully.

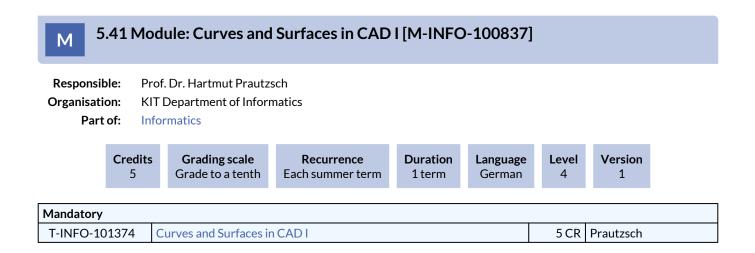
Content

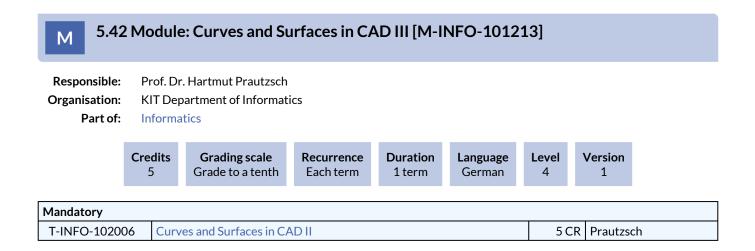
The module includes a course on several advanced management accounting methods that can be used for various decisions in operations and innovation management. By selecting another course, each student looks in more detail at one interface between management accounting a particular field in management, namely marketing, finance, or organization and strategy.

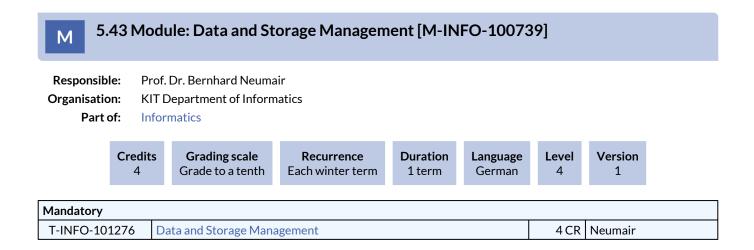
Recommendation

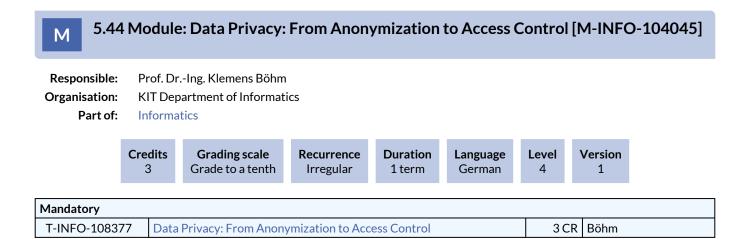

None

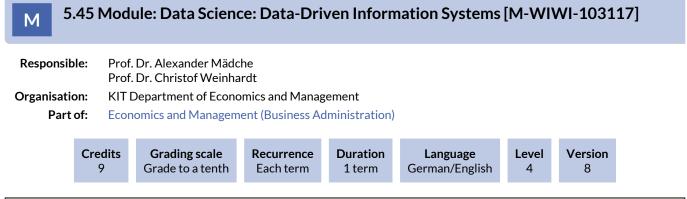

Annotation


The module "Cross-functional Management Accounting" always includes the compulsory course "Advanced Management Accounting." Students look at the interface between management accounting and another field in management. Students build the module by adding a course from the specified list. Students can also suggest another suitable course for this module for evaluation by the coordinator.


Workload


The total workload for this module is approximately 270 hours. For further information see German version.





Election block: Compulsory Elective Courses ()						
T-WIWI-108715	Artificial Intelligence in Service Systems	4,5 CR	Satzger			
T-WIWI-111219	Artificial Intelligence in Service Systems - Applications in Computer Vision	4,5 CR	Satzger			
T-WIWI-109863	Business Data Analytics: Application and Tools	4,5 CR	Weinhardt			
T-WIWI-106187	Business Data Strategy	4,5 CR	Weinhardt			
T-WIWI-105777	Business Intelligence Systems	4,5 CR	Mädche, Nadj, Toreini			
T-WIWI-110918	Introduction to Bayesian Statistics for Analyzing Data	3 CR	Scheibehenne			
T-WIWI-106207	Practical Seminar: Data-Driven Information Systems	4,5 CR	Mädche, Satzger, Setzer, Weinhardt			

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

Competence Goal

The student

- understands the strategic role of integrating, transforming, and analyzing large and complex enterprise data in modern business information systems and is capable of comparing and assessing strategic alternatives
- has the core skills to design, model, and control complex, inter-organisational analytical, processes, including various business functions as well as customers and markets
- understands the usage of performance indicators for a variety of controlling and management issues and is able to define models for generating the relevant performance indicators under considerations of data availability
- distinguishes different analytics methods and concepts and learn when to apply to better understand and anticipate business relationships and developments of industrial and in particular service companies to derive fact- and data- founded managerial actions and strategies.
- knows how to capture uncertainty in the data and how to appropriately consider and visualize uncertainty in decision support or business intelligence systems and analytical processes as a whole.

Prerequisites

None.

Content

The amount of business-related data availabe in modern enterprise information systems grows exponentially, and the various data sources are more and more integrated, transformed, and analyzed jointly to gain valuable business insights, pro-actively control and manage business processes, to leverage planning and decision making, and to provide appropriate, potentially novel services to customers based on relationships and developments observed in the data.

Also, data sources are more and more connected and single business unit that used to operate on separate data pools are now becoming highly integrated, providing tremendeous business opportunities but also challenges regarding how the data should be represented, integrated, preprocessed, transformed, and finally used in analytics planning and decision processes.

The courses of this module equip the students with core skills to understands the strategic role of integrating, transforming, and analyzing large and complex enterprise data in modern business information systems. Students will be capable to designing, comparing, and evaluating strategic alternatives. Also, students will learn how to design, model, and control complex analytical processes, including various business functions of industrial and service companies including customers and markets. Students learn core skills to understand fundamental strategies for integrating analytic models and operative controlling mechanisms while ensuring the technical feasibility of the resulting information systems.

Furthermore, the student can distinguish different methods and concepts in the realm of data science and learns when to apply. She/he will know the means of characterizing and analyzing hetergeneous, high-dimensional data available data in data warehouses and external data sources to gain additional insights valuable for enterprise planning and decision making. Also, the students know how to capture uncertainty in the data and how to appropriately consider and visualize uncertainty in business information and business intelligence systems.

The module offers the opportunity to apply and deepen this knowledge in a seminar and hands-on tutorials that are offered with all lectures.

Texteintrag

Recommendation

Basic knowledge of Information Management, Operations Research, Descriptive Statistics, and Inferential Statistics is assumed.

Annotation

The course "Business Data Strategy" can be chosen from winter term 2016 on.

5.46 Module: Data Science: Data-Driven User Modeling [M-WIWI-103118]

Responsible:	Prof. Dr. Christof Weinhardt
Organisation:	KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	1 term	German/English	4	5

Election block: Compulsory Elective Courses (at least 9 credits)						
T-WIWI-109863	Business Data Analytics: Application and Tools	4,5 CR	Weinhardt			
T-WIWI-102614	Experimental Economics	4,5 CR	Weinhardt			
T-WIWI-111109	KD ² Lab Hands-On Research Course: New Ways and Tools in Experimental Economics	4,5 CR	Weinhardt			
T-WIWI-102899	Modeling and Analyzing Consumer Behavior with R	4,5 CR	Dorner, Weinhardt			
T-WIWI-108765	Practical Seminar: Advanced Analytics	4,5 CR	Weinhardt			

Competence Certificate

The assessment is carried out as partial exams of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

Competence Goal

Students of this module

- learn methods for planning empirical studies, in particular laboratory experiments,
- acquire theoretical knowledge and practical skills in analysing empirical data,
- familiarize with different ways of modelling user behaviour, are able to critically discuss, and to evaluate them

Prerequisites

None

Content

Understanding and supporting user interactions with applications better plays an increasingly large role in the design of business applications. This applies both to interfaces for customers and to internal information systems. The data that is generated during user interactions can be channelled straight into business processes, for instance by analysing and decomposing purchase decisions, and by feeding this data into product design processes.

The Crowd Analytics section considers the analysis of data from online platforms, particularly of those following crowd- or peer-topeer based business models. This includes platforms like Airbnb, Kickstarter and Amazon Mechanical Turk.

Theoretical models of user (decision) behaviour help analyzing the empirically observed user behaviour in a systematic fashion. Testing these models and their predictions in controlled experiments (primarily in the lab) in turn helps refine theory and to generate practically relevant design recommendations. Analyses are carried out using advanced analytic methods.

Students learn fundamental theoretical models for user behaviour in systems and apply them to cases. Students are also taught methods and skills for conceptualizing and planning empirical studies and for analyzing the resulting data.

Recommendation

Basic knowledge of Information Management, Operations Research, Descriptive Statistics, and Inferential Statistics is assumed.

М	5.47 Module: Data Science: Evidence-based Marketing [M-WIWI-101647]

Responsible:	Prof. Dr. Martin Klarmann
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Business Administration)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	2 terms	German	4	5

Election block: Compulsory Elective Courses (9 credits)				
T-WIWI-103139	Marketing Analytics	4,5 CR	Klarmann	
T-WIWI-107720	Market Research	4,5 CR	Klarmann	

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- possess advanced knowledge of relevant market research contents
- know many different qualitative and quantitative methods for measuring customer behavior, preparation of strategic decisions, making causal deductions, usage of social media data and sales forecasting
- possess the statistical skills required for working in marketing research

Prerequisites

Keine.

Content

This module provides in-depth knowledge of relevant quantitative and qualitative methods used in market research. Students can attend the following courses:

- The course "Market Research" provides contents of practical relevance for measuring customer attitudes and customer behavior. The participants learn using statistical methods for strategic decision-making in marketing. Students who are interested in writing their master thesis at the Marketing & Sales Research Group are required to take this course.
- The course "Marketing Analytics" is based on "Market Research" and teaches advanced statistical methods for analyzing relevant marketing and market research questions. Please note that a successful completion of "Market Research" is a prerequisite for the completion of "Marketing Analytics".

Recommendation

None

Workload

The total workload for this module is approximately 270 hours.

5.48 Module: Data Science: Intelligent, Adaptive, and Learning Information Services [M-WIWI-105661]

Responsible: Prof. Dr. Andreas Geyer-Schulz

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

Election block: Compulsory Elective Courses (9 credits)						
T-WIWI-109921	Advanced Machine Learning	4,5 CR	Geyer-Schulz, Nazemi			
T-WIWI-111219	Artificial Intelligence in Service Systems - Applications in Computer Vision	4,5 CR	Satzger			
T-WIWI-102762	Business Dynamics	4,5 CR	Geyer-Schulz, Glenn			
T-WIWI-111267	Intelligent Agent Architectures	4,5 CR	Geyer-Schulz			
T-WIWI-110915	Intelligent Agents and Decision Theory	4,5 CR	Geyer-Schulz			
T-WIWI-102848	Personalization and Services	4,5 CR	Sonnenbichler			
T-WIWI-102847	Recommender Systems	4,5 CR	Geyer-Schulz			

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- models, analyzes and optimizes the structure and dynamics of complex economic changes.
- designs and develops intelligent, adaptive or learning agents as essential elements of information services.
- knows the essential learning methods for this and can apply them (also on modern architectures) in a targeted manner.
- develops and implements personalized services, especially in the area of recommender systems.
- develops solutions in teams.

Prerequisites

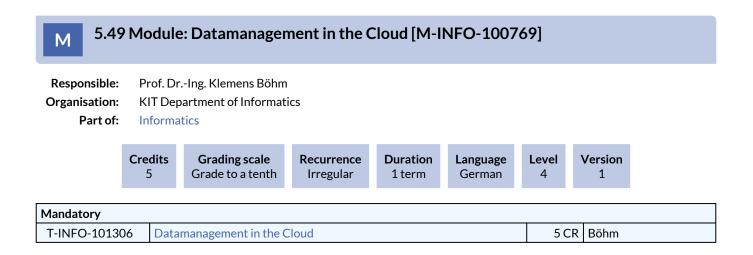
None

Content

The Intelligent Architectures course addresses how to design modern agent-based systems. The focus here is on software architecture and design patterns relevant to learning systems. In addition, important machine learning methods that complete the intelligent system are discussed. Examples of systems presented include key-map architectures and genetic methods.

The impact of management decisions in complex systems is considered in Business Dynamics. Understanding, modeling, and simulating complex systems enables analysis, purposeful design, and optimization of markets, business processes, regulations, and entire enterprises.

Special problems of intelligent systems are covered in Personalization and Services and Recommendersystems. The content includes approaches and methods to design user-oriented services. The measurement and monitoring of service systems is discussed, the design of personalized offers is discussed and the generation of recommendations based on collected data from products and customers is shown. The importance of user modeling and recognition is addressed, as well as data security and privacy.


Recommendation

None

Annotation

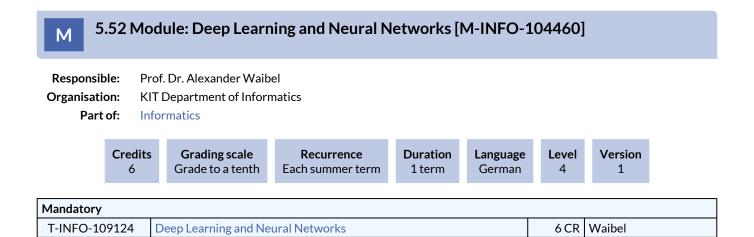
The module replaces from summer semester 2021 M-WIWI-101470 "Data Science: Advanced CRM".

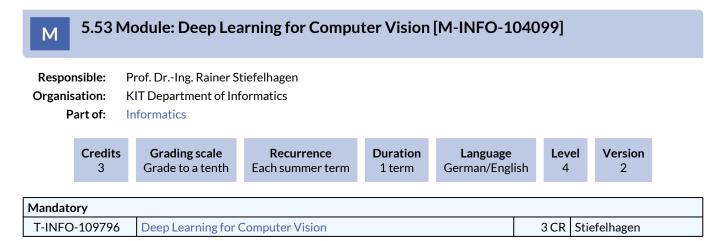
Workload

5.50 Module: Decentralized Systems: Fundamentals, Modeling, and Applications [M-INFO-105334]

Responsible:Prof. Dr. Hannes HartensteinOrganisation:KIT Department of Informatics

Part of:


Informatics


	Credits 5	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language English	Level 4	Version 2
Mandatory							
T-INFO-110820 Decentralized Systems: Fundamentals, Modeling, and Applications					cations	5 CR	Hartenstein

5.51 Module: Decision Procedures with Applications to Software Verification [M-INFO-104381]

Responsible: Prof. Dr. Carsten Sinz

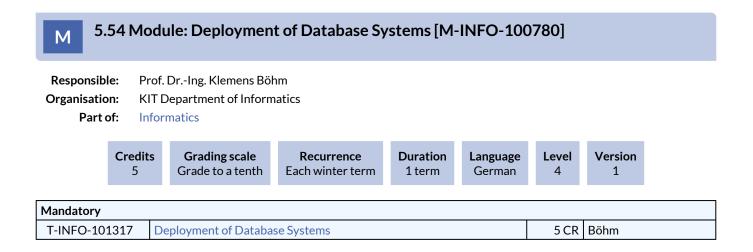
Organisation: KIT Department of Informatics Part of: Informatics Credits Grading scale Recurrence Duration Level Version Language 5 Grade to a tenth Each winter term 1 term German/English 4 1 Mandatory T-INFO-108955 Decision Procedures with Applications to Software Verification 5 CR Sinz

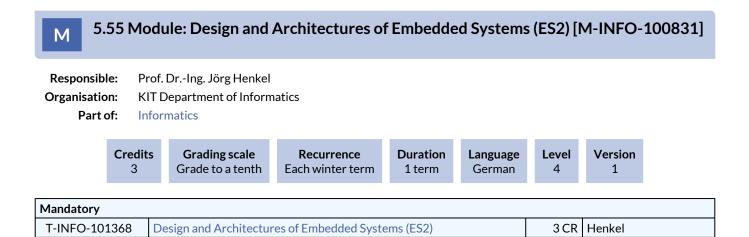
Competence Goal

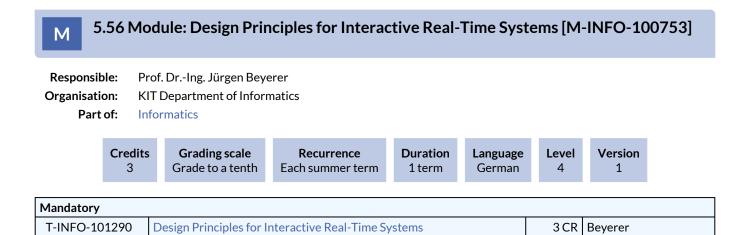
Students should be able to grasp the underlying concepts in the field of deep learning and its various applications.

- Understand the theoretical basis of deep learning
- Understand the Convolutional Neural Networks (CNN)
- Develop basis for the concepts and algorithms used in building and training the CNNs.
- Able to apply deep learning in different computer vision applications.

Content


In recent years tremendous progress has been made in analysing and understanding image and video content. The dominant approach in Computer Vision today are deep learning approaches, in particular the usage of Convolutional Neural Networks.


The lecture introduces the basics, as well as advanced aspects of deep learning methods and their application for a number of computer vision tasks. The following topics will be addressed in the lecture:


- Introduction to Deep Learning
- Convolutional Neural Networks (CNN): Background
- CNNs: basic architectures and learning algorithms
- Object Recognition with CNN
- Image Segmentation with CNN
- Recurrent Neural Networks
- Generating image descriptions (Image Captioning)
- Automatic question answering (Visual Question Answering)
- Generative Adversarial Networks (GAN) and their applications
- Deep Learning platforms and tools

Annotation

The course is partially given in German and English.

5.57 Module: Designing Interactive Information Systems [M-WIWI-104080]

Responsible:Prof. Dr. Alexander MädcheOrganisation:KIT Department of Economics and ManagementPart of:Economics and Management (Business Administration)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	1 term	German/English	4	3

Mandatory						
T-WIWI-110851	Designing Interactive Systems	4,5 CR	Mädche			
Election block: Supp	Election block: Supplementary Courses (at most 4,5 credits)					
T-WIWI-110877	Engineering Interactive Systems	4,5 CR				
T-WIWI-111109	KD ² Lab Hands-On Research Course: New Ways and Tools in Experimental Economics	4,5 CR	Weinhardt			
T-WIWI-108437	Practical Seminar: Information Systems and Service Design	4,5 CR	Mädche			

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

Competence Goal

The student

- has a comprehensive understanding of conceptual and theoretical foundations of interactive systems
- knows design processes for interactive systems
- is aware of the most important techniques and tools for designing interactive systems and knows how to apply them to real-world problems
- is able to apply design principles for the design of most important classes of interactive systems,
- creates new solutions of interactive systems teams

Prerequisites

The course "Interactive Information Systems" is compulsory and must be examined.

Content

Advanced information and communication technologies make interactive systems ever-present in the users' private and business life. They are an integral part of smartphones, devices in the smart home, mobility vehicles as well as at the working place in production and administration (e.g. in the form of dashboards).

With the continuous growing capabilities of computers, the design of the interaction between human and computer becomes even more important. This module focuses on design processes and principles for interactive systems. The contents of the module abstract from the technical implementation details and focus on foundational concepts, theories, practices and methods for the design of interactive systems. The students get the necessary knowledge to guide the successful implementation of interactive systems in business and private life.

Each lecture in the module is accompanied with a capstone project that is carried out with an industry partner.

Annotation

See http://issd.iism.kit.edu/305.php for further information.

Workload

The total workload for this module is approximately 270 hours.

5.58 Module: Development of Business Information Systems [M-WIWI-101477]

 Responsible:
 Prof. Dr. Andreas Oberweis

 Organisation:
 KIT Department of Economics and Management

 Part of:
 Informatics

Election block: Compulsory Elective Courses (between 1 and 2 items)						
T-WIWI-102661	Database Systems and XML	4,5 CR	Oberweis			
T-WIWI-102895	Software Quality Management	4,5 CR	Oberweis			
Election block: Supp	Election block: Supplementary Courses (at most 1 item)					
T-WIWI-110346	Supplement Enterprise Information Systems	4,5 CR	Oberweis			
T-WIWI-102667	Management of IT-Projects	4,5 CR	Schätzle			
T-WIWI-110548	Advanced Lab Informatics (Master)	4,5 CR	Professorenschaft des Fachbereichs Informatik			
T-WIWI-102669	Strategic Management of Information Technology	4,5 CR	Wolf			

Competence Certificate

The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- describe the structure and the components of enterprise information systems,
- explain functionality and architecture of the enterprise information system components,
- choose and apply relevant components to solve given problems in a methodic approach,
- describe roles, activities and products in the field of software engineering management,
- compare process and quality models and choose an appropriate model in a concrete situation,
- write scientific theses in the areas of enterprise information system components and software engineering management and find own solutions for given problems and research questions.

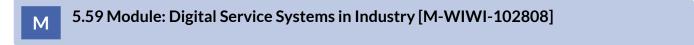
Prerequisites

The course Datenbanksysteme und XML or the course Software Quality Management must be examined.

Content

An enterprise information system contains the complete application software to store and process data and information in an organisation including design and management of databases, workflow management and strategic information planning.

Due to global networking and geographical distribution of enterprises as well as the increasing acceptation of eCommerce the application of distributed information systems becomes particular important.


This module teaches concepts and methods for design and application of information systems.

Annotation

The course T-WIWI-102759 "Requirements Analysis and Requirements Management" will no longer be offered in the module as of winter semester 2018/2019.

Workload

See German version

Responsible:	Prof. Dr. Wolf Fichtner
	Prof. Dr. Stefan Nickel
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Business Administration)

CreditsGrading scaleRecurrenceDurationLanguageLevelVersion9Grade to a tenthEach term2 termsGerman46

Election block: Compulsory Elective Courses (9 credits)						
T-WIWI-102872 Challenges in Supply Chain Management 4,5 CR Mohr						
T-WIWI-110280	Digital Services: Business Models and Transformation	4,5 CR	Satzger			
T-WIWI-107043	Liberalised Power Markets	3 C R	Fichtner			
T-WIWI-106200	Modeling and OR-Software: Advanced Topics	4,5 CR	Nickel			
T-WIWI-106563	Practical Seminar Digital Service Systems	4,5 CR	Mädche, Satzger			

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal

Competence Goal

Students

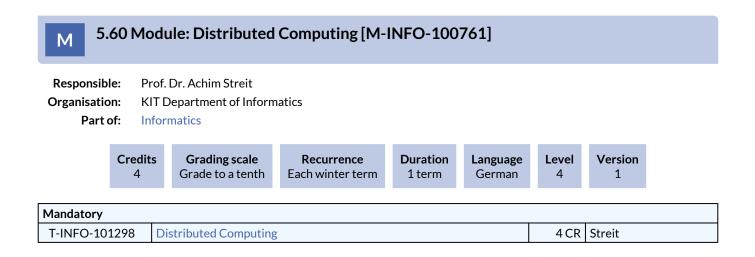
- understand the basics of the management of digital services applied on an industrial context
- gain an industry-specific insight into the importance and most relevant characteristics of information systems as key components of the digitalization of business processes, products and services
- are able to transfer and apply the models and methods introduced on practical scenarios and simulations.
- understand the control and optimization methods in the sector of service management and are able to apply them properly.

Prerequisites

This module can only be assigned as an elective module.

Content

This module aims at deepening the fundamental knowledge of digital service management in the industrial context. Various mechanisms and methods to shape and control connected digital service systems in different industries are discussed and demonstrated with real life application cases.


Recommendation

None

Annotation

This module is part of the KSRI teaching profile "Digital Service Systems". Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching

Workload

5.61 Module: Econometrics and Statistics I [M-WIWI-101638]

Responsible: Organisation: Part of: Prof. Dr. Melanie Schienle KIT Department of Economics and Management

: Economics and Management (Statistics)

Mandatory						
T-WIWI-103125	Applied Econometrics	4,5 CR	Schienle			
Election block: Supp	Election block: Supplementary Courses (between 4,5 and 5 credits)					
T-WIWI-103066	Data Mining and Applications	4,5 CR	Nakhaeizadeh			
T-WIWI-103064	Financial Econometrics	4,5 CR	Schienle			
T-WIWI-103126	Non- and Semiparametrics	4,5 CR	Schienle			
T-WIWI-103127	Panel Data	4,5 CR	Heller			
T-WIWI-110868	Predictive Modeling	4,5 CR	Krüger			
T-WIWI-103065	Statistical Modeling of Generalized Regression Models	4,5 CR	Heller			
T-WIWI-110939	Financial Econometrics II	4,5 CR	Schienle			

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student shows an in depth understanding of advanced Econometric techniques suitable for different types of data.He/She is able to apply his/her theoretical knowledge to real world problems with the help of statistical software and to evaluate performance of different approaches based on statistical criteria.

Prerequisites

The course "Advanced Statistics" [2520020] is compulsory and must be examined.

Content

The courses of this module offer students a broad range of advanced Econometric techniques for state-of-the art data analysis.

Workload

The total workload for this module is approximately 270 hours.

5.62 Module: Econometrics and Statistics II [M-WIWI-101639] Μ

Responsible: Organisation: Prof. Dr. Melanie Schienle

Part of:

KIT Department of Economics and Management

Economics and Management (Statistics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	1 term	German	4	3

Election block: Com	pulsory Elective Courses (between 9 and 10 credits)		
T-WIWI-103066	Data Mining and Applications	4,5 CR	Nakhaeizadeh
T-WIWI-103064	Financial Econometrics	4,5 CR	Schienle
T-WIWI-103124	Multivariate Statistical Methods	4,5 CR	Grothe
T-WIWI-103126	Non- and Semiparametrics	4,5 CR	Schienle
T-WIWI-103127	Panel Data	4,5 CR	Heller
T-WIWI-103128	Portfolio and Asset Liability Management	4,5 CR	Safarian
T-WIWI-110868	Predictive Modeling	4,5 CR	Krüger
T-WIWI-103065	Statistical Modeling of Generalized Regression Models	4,5 CR	Heller
T-WIWI-103129	Stochastic Calculus and Finance	4,5 CR	Safarian
T-WIWI-110939	Financial Econometrics II	4,5 CR	Schienle

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student shows an in depth understanding of advanced Econometric techniques suitable for different types of data. He/She is able to apply his/her theoretical knowledge to real world problems with the help of statistical software and to evaluate performance of different approaches based on statistical criteria.

Prerequisites

This module can only be passed if the module "Econometrics and Statistics I" has been finished successfully before.

Content

This modula builds on prerequisites acquired in Module" Econometrics and Statistics I". The courses of this module offer students a broad range of advanced Econometric techniques for state-of-the art data analysis.

Workload

The total workload for this module is approximately 270 hours.

5.63 Module: Economic Theory and its Application in Finance [M-WIWI-101502]

Responsible:Prof. Dr. Kay MituschOrganisation:KIT Department of Economics and ManagementPart of:Economics and Management (Economics)

Grading scale	Recurrence	Duration	Language	Level	Version
Grade to a tenth	Each term	1 term	German/English	4	4

Election block: Com	pulsory Elective Courses (1 item)		
T-WIWI-102609	Advanced Topics in Economic Theory	4,5 CR	Mitusch
T-WIWI-102861	Advanced Game Theory	4,5 CR	Ehrhart, Puppe, Reiß
Election block: Supp	lementary Courses (1 item)		
T-WIWI-102647	Asset Pricing	4,5 CR	Ruckes, Uhrig- Homburg
T-WIWI-102622	Corporate Financial Policy	4,5 CR	Ruckes
T-WIWI-109050	Corporate Risk Management	4,5 CR	Ruckes
T-WIWI-102623	Financial Intermediation	4,5 CR	Ruckes

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The students

- have learnt the methods of formal economic modeling, particularly of General Equilibrium Theory and contract theory
- will be able to apply these methods to the topics in Finance, specifically the areas of financial markets and institutions and corporate finance
- have gained many useful insights into the relationship between firms and investors and the functioning of financial markets

Prerequisites

One of the courses T-WIWI-102861 "Advanced Game Theory" and T-WIWI-102609 "Advanced Topics in Economic Theory" is compulsary.

Content

The mandatory course "Advanced Topics in Economic Theory" is devoted in equal parts to General Equilibrium Theory and to contract theory. The course "Asset Pricing" will apply techniques of General Equilibrium Theory to valuation of financial assets. The courses "Corporate Financial Policy" and "Finanzintermediation" will apply the techniques of contract theory to issues of corporate finance and financial institutions.

Workload

5.64 Module: eEnergy: Markets, Services and Systems [M-WIWI-103720] Μ

Prof. Dr. Christof Weinhardt **Responsible:** Organisation:

KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

Election block: Compulsory Elective Courses (at least 9 credits)				
T-WIWI-107501	Energy Market Engineering	4,5 CR	Weinhardt	
T-WIWI-107503	Energy Networks and Regulation	4,5 CR	Weinhardt	
T-WIWI-107504	Smart Grid Applications	4,5 CR	Weinhardt	
T-WIWI-109940	Special Topics in Information Systems	4,5 CR	Weinhardt	

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- is aware of design options for energy and especially electricity markets and can derive implications for the market results from the market design,
- knows about current trends regarding the Smart Grid and understands affiliated modelling aproaches, •
- can evaluate business models of electricity grids according to the regulation regime ٠
- is prepared for scientific contributions in the field of energy system analysis. •

Prerequisites

None.

Content

The module conveys scientific and practical knowledge to analyse energy markets and according business models. To do so the scientific discussion on energy market designs is evaluated and analysed. Different energy market models are presented and their design implications are evaluated. Furthermore, the electricity system is analysed with regards to being a network industry and resulting regulation and business models are discussed. Besides these traditional areas of energy economics we will look at methods and models of digitalisation in the energy sector.

Annotation

The lecture Smart Grid Applications will be available starting in the winter term 2018/19.

Workload

5.65 Module: Electronic Markets [M-WIWI-101409]

Responsible: Organisation: Part of: Prof. Dr. Andreas Geyer-Schulz

KIT Department of Economics and Management

f: Economics and Management (Business Administration)

Election block: Com	Election block: Compulsory Elective Courses (at least 9 credits)				
T-WIWI-108880	Blockchains & Cryptofinance	4,5 CR	Schuster, Uhrig- Homburg		
T-WIWI-102762	Business Dynamics	4,5 CR	Geyer-Schulz, Glenn		
T-WIWI-102640	Market Engineering: Information in Institutions	4,5 CR	Weinhardt		
T-WIWI-105946	Price Management	4,5 CR	Geyer-Schulz, Glenn		
T-WIWI-102713	Telecommunication and Internet Economics	4,5 CR	Mitusch		

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- knows coordination and motivation methods and analyzes them regarding their efficiency,
- classifies markets and describes the roles of the participants in a formal way,
- knows the conditions for market failure and knows and develops countermeasures,
- knows institutions and market mechanisms, their fundamental theories and empirical research results,
- knows the design criteria of market mechanisms and a systematical approach for creating new markets,
- models, analyzes and optimizes the structure and dynamics of complex business applications.

Prerequisites

None

Content

What are the conditions that make electronic markets develop and how can one analyse and optimize such markets?

In this module, the selection of the type of organization as an optimization of transaction costs is treated. Afterwards, the efficiency of electronic markets (price, information and allocation efficiency) as well as reasons for market failure are described. Finally, motivational issues like bounded rationality and information assymetries (private information and moral hazard), as well as the development of incentive schemes, are presented. Regarding the market design, especially the interdependencies of market organization, market mechanisms, institutions and products are described and theoretical foundations are lectured.

Electronic markets are dynamic systems that are characterized by feedback loops between many different variables. By means of the tools of business dynamics such markets can be modelled. Simulations of complex systems allow the analysis and optimization of markets, business processes, policies, and organizations.

Topics include:

- classification, analysis, and design of markets
- simulation of markets
- auction methods and auction theory
- automated negotiations
- nonlinear pricing
- continuous double auctions
- market-maker, regulation, control

Recommendation

Information Systems M.Sc. Module Handbook as of 09/04/2021


Workload

5.66 Module: Embedded Systems for Multimedia and Image Processing [M-INFO-100759]

Responsible:Prof. Dr.-Ing. Jörg HenkelOrganisation:KIT Department of Informatics

Part of: Informatics

	Credits 3	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language English	Level 4	Version 1
Mandatory							
T-INFO-10	01296 Embedded Systems for Multimedia and Image Processing			3 CR	Henkel		

5.68 Module: Energy Economics and Energy Markets [M-WIWI-101451]

Responsible:	Prof. Dr. Wolf Fichtner
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Business Administration)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	1 term	German/English	4	7

Mandatory	Mandatory						
T-WIWI-107043	Liberalised Power Markets	3 C R	Fichtner				
Election block: Supplementary Courses (at least 6 credits)							
T-WIWI-102691	Energy Trade and Risk Management	3 C R	N.N.				
T-WIWI-107501	T-WIWI-107501 Energy Market Engineering		Weinhardt				
T-WIWI-108016	F-WIWI-108016 Simulation Game in Energy Economics		Genoese				
T-WIWI-107446	F-WIWI-107446 Quantitative Methods in Energy Economics		Plötz				
T-WIWI-102712	Regulation Theory and Practice	4,5 CR	Mitusch				

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- gains detailed knowledge about the new requirements of liberalised energy markets,
- describes the planning tasks on the different energy markets,
- knows solution approaches to respective planning tasks.

Prerequisites

The lecture Liberalised Power Markets has to be examined.

Content

Liberalised Power Markets: The European liberalisation process, energy markets, pricing, market failure, investment incentives, market power

Energy Trade and Risk Management: trade centres, trade products, market mechanisms, position and risk management Simulation Game in Energy Economics: Simulation of the German electricity system

Recommendation

The courses are conceived in a way that they can be attended independently from each other. Therefore, it is possible to start the module in winter and summer term.

Workload

The total workload for this module is approximately 270 hours.

5.69 Module: Energy Economics and Technology [M-WIWI-101452]

Responsible:	Prof. Dr. Wolf Fichtner
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Business Administration)

Credits
9Grading scale
Grade to a tenthRecurrence
Each termDuration
1 termLanguage
German/EnglishLevel
4Version
4

Election block: Com	Election block: Compulsory Elective Courses (at least 9 credits)					
T-WIWI-102793	Efficient Energy Systems and Electric Mobility	3,5 CR	Jochem			
T-WIWI-102650	Energy and Environment	4,5 CR	Karl			
T-WIWI-102830	T-WIWI-102830 Energy Systems Analysis		Ardone, Fichtner			
T-WIWI-107464	Smart Energy Infrastructure	3 C R	Ardone, Pustisek			
T-WIWI-102695	Heat Economy	3 C R	Fichtner			

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- gains detailed knowledge about present and future energy supply technologies (focus on final energy carriers electricity and heat),
- knows the techno-economic characteristics of plants for energy provision, for energy transport as well as for energy distribution and demand,
- is able to assess the environmental impact of these technologies.

Prerequisites

None

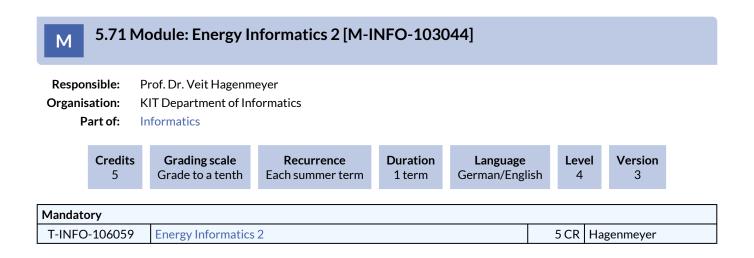
Content

Heat Economy: district heating, heating technologies, reduction of heat demand, statutory provisions

Energy Systems Analysis: Interdependencies in energy economics, energy systems modelling approaches in energy economics Energy and Environment: emission factors, emission reduction measures, environmental impact

Efficient Energy Systems and Electric Mobility: concepts and current trends in energy efficiency, Overview of and economical, ecological and social impacts through electric mobility

Workload


Г

5.70 Module: Energy Informatics 1 [M-INFO-101885]

Responsible:Prof. Dr. Veit HagenmeyerOrganisation:KIT Department of InformaticsPart of:Informatics

		Credits 5	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German/English	Level 4	Version 2
--	--	---------------------	--	---------------------------------------	--------------------	-----------------------------------	------------	--------------

Mandatory			
T-INFO-103582	T-INFO-103582 Energy Informatics 1		Hagenmeyer
T-INFO-110356	-INFO-110356 Energy Informatics 1 - preliminary work		Hagenmeyer

5.72 Module: Entrepreneurship (EnTechnon) [M-WIWI-101488] M **Responsible:** Prof. Dr. Orestis Terzidis KIT Department of Economics and Management **Organisation:** Part of: Economics and Management (Business Administration) Credits **Grading scale** Recurrence Duration Language Level Version 9 Grade to a tenth Each term 2 terms German/English 4 9 Election block: Mandatory part (1 item) T-WIWI-102864 3 CR Entrepreneurship Terzidis Election block: Compulsory Elective Courses (1 item) T-WIWI-102865 **Business Planning** 3 CR Terzidis T-WIWI-102866 3 CR Terzidis **Design Thinking** T-WIWI-102833 Entrepreneurial Leadership & Innovation Management 3 CR Terzidis T-WIWI-102894 3 CR Terzidis **Entrepreneurship Research** T-WIWI-110985 International Business Development and Sales 6 CR Casenave, Klarmann, Terzidis Election block: Supplementary Courses (1 item) T-WIWI-102866 **Design Thinking** 3 CR Terzidis T-WIWI-102851 Developing Business Models for the Semantic Web 3 CR Sure-Vetter T-WIWI-102833 **Entrepreneurial Leadership & Innovation Management** 3 CR Terzidis T-WIWI-102894 **Entrepreneurship Research** 3 CR Terzidis T-WIWI-102852 Case Studies Seminar: Innovation Management 3 CR Weissenberger-Eibl T-WIWI-102639 Business Models in the Internet: Planning and Implementation 4,5 CR Weinhardt T-WIWI-102865 **Business Planning** 3 CR Terzidis T-WIWI-110374 Firm creation in IT security 3 CR Terzidis T-WIWI-102893 Innovation Management: Concepts, Strategies and Methods 3 CR Weissenberger-Eibl T-WIWI-109064 6 CR Terzidis Joint Entrepreneurship Summer School T-WIWI-102612 Managing New Technologies 3 CR Reiß T-WIWI-102853 Roadmapping 3 CR Koch T-WIWI-110985 International Business Development and Sales 6 CR Casenave, Klarmann, Terzidis

Competence Certificate

See German version.

Competence Goal See German version.

Prerequisites

None

Recommendation None

Workload

5.73 Module: Environmental Economics [M-WIWI-101468] Μ

Responsible: Prof. Dr. Kay Mitusch Organisation: KIT Department of Economics and Management Part of:

Election block: Com	lection block: Compulsory Elective Courses (at least 9 credits)					
T-WIWI-102650	Energy and Environment	4,5 CR	Karl			
T-WIWI-100007	T-WIWI-100007 Transport Economics		Mitusch, Szimba			
T-WIWI-102615	T-WIWI-102615 Environmental Economics and Sustainability		Walz			
T-WIWI-102616 Environmental and Resource Policy		4 CR	Walz			
T-BGU-111102	Environmental Law	3 C R				

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offerd at every ordinary examination date. The assessment procedures are described for each course of the module seperately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

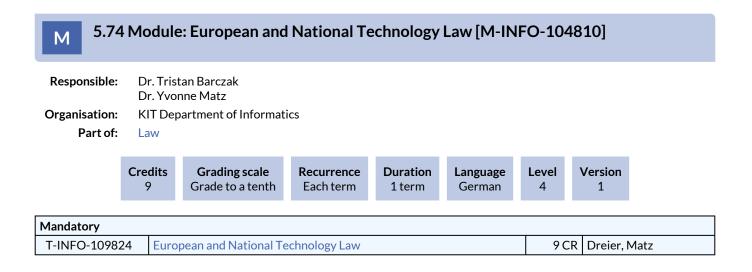
Competence Goal

The students

- understand the treatment of non-market resources as well as future resource shortages
- are able to model markets of energy and environmental goods
- are able to assess the results of government intervention
- know legal basics and are able to evaluate conflicts with regard to legal situation

Prerequisites

None


Content

Environmental degradation and increasing resource use are global challenges, which have to be tackled on a worldwide level. The module addresses these challenges from the perspective of economics, and imparts the fundamental knowledge of environmental and sustainability economics, and environmental and resource policy to the students. Additional courses address environmental law, environmental pressure, and applications to the transport sector.

Recommendation

Knowledge in the area of microeconomics and of the content of the courseEconomics I: Microeconomics[2600012], respectively, is required.

Workload

5.75 Module: Experimental Economics [M-WIWI-101505]

Responsible: Organisation: Part of:

Prof. Dr. Johannes Philipp Reiß

on: KIT Department of Economics and Management

f: Economics and Management (Economics)

Election block: Com	Election block: Compulsory Elective Courses (2 items)					
T-WIWI-102614 Experimental Economics			Weinhardt			
T-WIWI-105781	T-WIWI-105781 Incentives in Organizations		Nieken			
T-WIWI-102862	T-WIWI-102862 Predictive Mechanism and Market Design		Reiß			
T-WIWI-102863	Topics in Experimental Economics	4,5 CR	Reiß			

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- are acquainted with the methods of Experimental Economics along with its strengths and weaknesses;
- understand how theory-guided research in Experimental Economics interacts with the development of theory;
- are provided with foundations in data analysis;
- design an economic experiment and analyze its outcome.

Prerequisites

None.

Content

The module Experimental Economics offers an introduction into the methods and topics of Experimental Economics. It also fosters and extends knowledge in theory-guided experimental economics and its interaction with theory development. Throughout the module, readings of selected papers are required.

Recommendation

Basic knowledge in mathematics, statistics, and game theory is assumed.

Annotation

The course "Predictive Mechanism and Market Design" is offered every second winter semester, e.g. WS2013 / 14, WS2015 / 16, ...

Workload

Homburg

5.76 Module: Finance 1 [M-WIWI-101482] Μ **Responsible:** Prof. Dr. Martin Ruckes Prof. Dr. Marliese Uhrig-Homburg KIT Department of Economics and Management Organisation: Part of: Economics and Management (Business Administration) Credits **Grading scale** Recurrence Duration Version Language Level 9 Grade to a tenth German/English Each term 1 term 4 1 Election block: Compulsory Elective Courses (9 credits) T-WIWI-102643 Derivatives 4,5 CR Uhrig-Homburg T-WIWI-102621 4,5 CR Valuation Ruckes 4,5 CR T-WIWI-102647 **Asset Pricing** Ruckes, Uhrig-

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- has core skills in economics and methodology in the field of finance
- assesses corporate investment projects from a financial perspective
- is able to make appropriate investment decisions on financial markets

Prerequisites

None

Content

The courses of this module equip the students with core skills in economics and methodology in the field of modern finance. Securities which are traded on financial and derivative markets are presented, and frequently applied trading strategies are discussed. A further focus of this module is on the assessment of both profits and risks in security portfolios and corporate investment projects from a financial perspective.

Workload

5.77 Module: Finance 2 [M-WIWI-101483] Μ

Responsible:	Prof. Dr. Martin Ruckes Prof. Dr. Marliese Uhrig-Homburg
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Business Administr

nt (Business Administration)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version	
9	Grade to a tenth	Each term	1 term	German/English	4	6	

Election block: Com	pulsory Elective Courses (9 credits)		
T-WIWI-110513	Advanced Empirical Asset Pricing	4,5 CR	Thimme
T-WIWI-102647	Asset Pricing	4,5 CR	Ruckes, Uhrig- Homburg
T-WIWI-108880	Blockchains & Cryptofinance	4,5 CR	Schuster, Uhrig- Homburg
T-WIWI-110995	Bond Markets	4,5 CR	Uhrig-Homburg
T-WIWI-110997	Bond Markets - Models & Derivatives	3 C R	Uhrig-Homburg
T-WIWI-110996	Bond Markets - Tools & Applications	1,5 CR	Uhrig-Homburg
T-WIWI-102622	Corporate Financial Policy	4,5 CR	Ruckes
T-WIWI-109050	Corporate Risk Management	4,5 CR	Ruckes
T-WIWI-102643	Derivatives	4,5 CR	Uhrig-Homburg
T-WIWI-110797	0		Weinhardt
T-WIWI-102644	Fixed Income Securities	4,5 CR	Uhrig-Homburg
T-WIWI-102900	Financial Analysis	4,5 CR	Luedecke
T-WIWI-102623	Financial Intermediation	4,5 CR	Ruckes
T-WIWI-102626	Business Strategies of Banks	3 CR	Müller
T-WIWI-102646	International Finance	3 CR	Uhrig-Homburg
T-WIWI-102645	Credit Risk	4,5 CR	Uhrig-Homburg
T-WIWI-110511	Strategic Finance and Technoloy Change	1,5 CR	Ruckes
T-WIWI-102621	Valuation	4,5 CR	Ruckes
T-WIWI-110933	Web App Programming for Finance	4,5 CR	Thimme

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student is in a position to discuss, analyze and provide answers to advanced economic and methodological issues in the field of modern finance.

Prerequisites

It is only possible to choose this module in combination with the module Finance 1. The module is passed only after the final partial exam of Finance 1 is additionally passed.

Content

The module Finance 2 is based on the module Finance 1. The courses of this module equip the students with advanced skills in economics and methodology in the field of modern finance on a broad basis.

Annotation

The courses eFinance: Information Engineering and Management for Securities Trading [2540454] and Financial Analysis [2530205] can be chosen from summer term 2015 on.

Workload

5.78 Module: Finance 3 [M-WIWI-101480]

Responsible:	Prof. Dr. Martin Ruckes Prof. Dr. Marliese Uhrig-Homburg
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Business Administration)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version	
9	Grade to a tenth	Each term	1 term	German/English	4	6	

T-WIWI-110513	Advanced Empirical Asset Pricing	4,5 CR	Thimme
T-WIWI-102647	Asset Pricing	4,5 CR	Ruckes, Uhrig- Homburg
T-WIWI-108880	Blockchains & Cryptofinance	4,5 CR	Schuster, Uhrig- Homburg
T-WIWI-110995	Bond Markets	4,5 CR	Uhrig-Homburg
T-WIWI-110997	Bond Markets - Models & Derivatives	3 C R	Uhrig-Homburg
T-WIWI-110996	Bond Markets - Tools & Applications	1,5 CR	Uhrig-Homburg
T-WIWI-102622	Corporate Financial Policy	4,5 CR	Ruckes
T-WIWI-109050	Corporate Risk Management	4,5 CR	Ruckes
T-WIWI-102643	Derivatives	4,5 CR	Uhrig-Homburg
T-WIWI-110797	eFinance: Information Systems for Securities Trading	4,5 CR	Weinhardt
T-WIWI-102644	Fixed Income Securities	4,5 CR	Uhrig-Homburg
T-WIWI-102900	Financial Analysis	4,5 CR	Luedecke
T-WIWI-102623	Financial Intermediation	4,5 CR	Ruckes
T-WIWI-102626	Business Strategies of Banks	3 CR	Müller
T-WIWI-102646	International Finance	3 CR	Uhrig-Homburg
T-WIWI-102645	Credit Risk	4,5 CR	Uhrig-Homburg
T-WIWI-110511	Strategic Finance and Technoloy Change	1,5 CR	Ruckes
T-WIWI-102621	Valuation	4,5 CR	Ruckes
T-WIWI-110933	Web App Programming for Finance	4,5 CR	Thimme

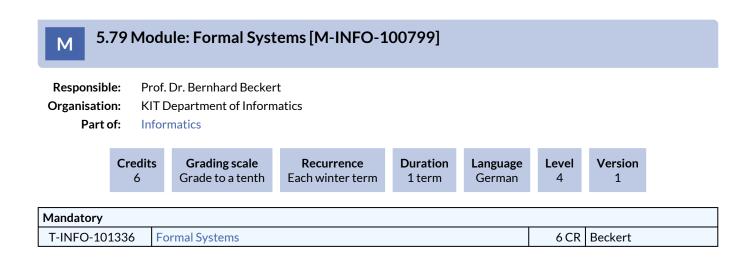
Competence Certificate

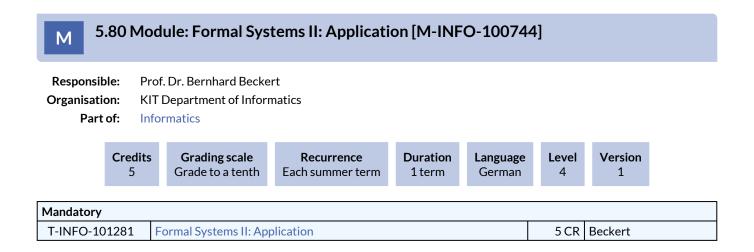
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module seperately.

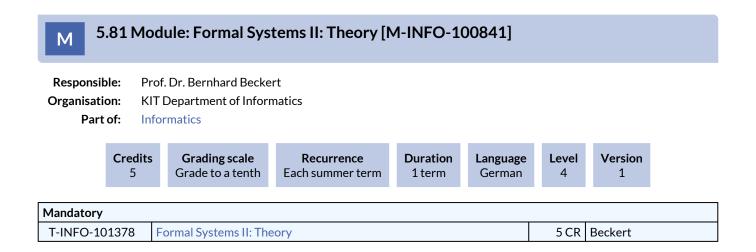
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

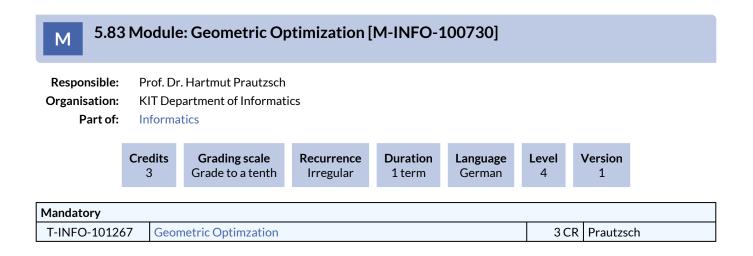
The student is in a position to discuss, analyze and provide answers to advanced economic and methodological issues in the field of modern finance.


Prerequisites


It is only possible to choose this module in combination with the module *Finance* 1 and *Finance* 2. The module is passed only after the final partial exams of *Finance* 1 and *Finance* 2 are additionally passed.


Content

The courses of this module equip the students with advanced skills in economics and methodology in the field of modern finance on a broad basis.


Workload

M 5	5.82 Mo	dule: Fuzzy Sets	[M-INFO-100839	9]			
Responsible:Prof. DrIng. Uwe HanebeckOrganisation:KIT Department of InformaticsPart of:Informatics							
	Credits 6	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 1
Mandatory							
T-INFO-10	01376	Fuzzy Sets				6 CR	Hanebeck

M 5.85 Module: Graph Partitioning and Graph Clustering in Theory and Practice [M-INFO-100758]

Responsible:	Prof. Dr. Peter Sanders Dr. rer. nat. Torsten Ueckerdt
Organisation:	KIT Department of Informatics
Part of:	Informatics

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
5	Grade to a tenth	Each summer term	1 term	German	4	2

Mandatory			
T-INFO-101295	Graph Partitioning and Graph Clustering in Theory and Practice	4 CR	Sanders, Ueckerdt
T-INFO-110999	Graph Partitioning and Graph Clustering in Theory and Practice - Practical	1 CR	Sanders, Ueckerdt

5.86 Module: Growth and Agglomeration [M-WIWI-101496]

Responsible:	Prof. Dr. Ingrid Ott
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Economics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	1 term	German/English	4	4

Election block: Compulsory Elective Courses (9 credits)					
T-WIWI-109194	Dynamic Macroeconomics	4,5 CR	Brumm		
T-WIWI-103107	Spatial Economics	4,5 CR	Ott		
T-WIWI-111318	Growth and Development	4,5 CR	Ott		

Competence Certificate

The assessment is carried out as partial written exams (see the lectures descriptions).

The overall grade for the module is the average of the grades for each course weighted by the credits.

Competence Goal

The student

- gains deepened knowledge of micro-based general equilibrium models
- understands how based on individual optimizing decisions aggregate phenomena like economic growth or agglomeration (cities / metropolises) result
- is able to understand and evaluate the contribution of these phenomena to the development of economic trends
- can derive policy recommendations based on theory

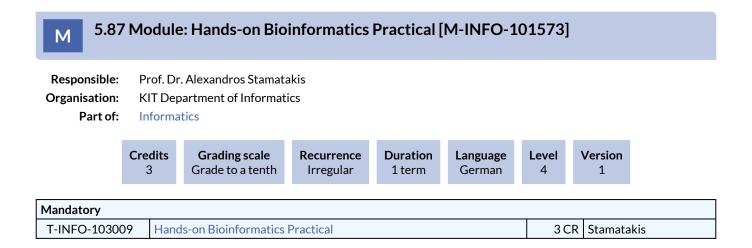
Prerequisites

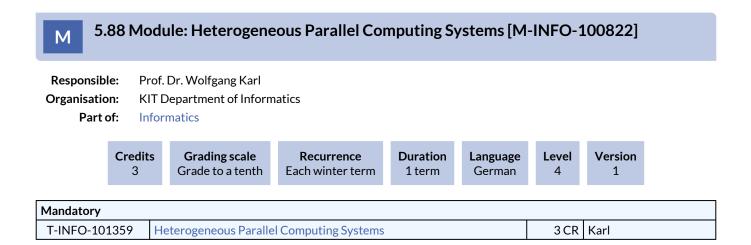
None

Content

The module includes the contents of the lectures *Endogenous Growth Theory* [2561503], *Spatial Economics* [2561260] and *International Economic Policy* [2560254]. While the first two lectures have a more formal-analytic focus, the third lecture approaches fundamental ideas and problems from the field of international economic policy from a more verbal perspective.

The common underlying principle of all three lectures in this module is that, based on different theoretical models, economic policy recommendations are derived.


Recommendation


Attendance of the course Introduction Economic Policy [2560280] is recommended.

Successful completion of the coursesEconomics I: MicroeconomicsandEconomics II: Macroeconomicsis required.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

5.89 Module: Human Brain and Central Nervous System: Anatomy, Information Transfer, Signal Processing, Neurophysiology and Therapy [M-INFO-100725]

Responsible:Prof. Dr.-Ing. Tamim AsfourOrganisation:KIT Department of InformaticsPart of:Informatics

ſ

5.90 Module: Human Computer Interaction [M-INFO-100729] Μ

Prof. Dr.-Ing. Michael Beigl **Responsible:** Organisation: Part of: Informatics

KIT Department of Informatics

Credits 6Grading scale Grade to a tenthRecurrence Each summer termDuration 1 termLanguage GermanLevel 4Version 1

Mandatory			
T-INFO-101266	Human-Machine-Interaction	6 CR	Beigl
T-INFO-106257	Human-Machine-Interaction Pass	0 C R	Beigl

5.91 Module: Human Factors in Security and Privacy [M-WIWI-104520]

Responsible:Prof. Dr. Melanie VolkamerOrganisation:KIT Department of Economics and ManagementPart of:Informatics

Mandatory			
T-WIWI-109270	Human Factors in Security and Privacy	4,5 CR	Volkamer
T-WIWI-108439	Advanced Lab Security, Usability and Society	4,5 CR	Volkamer

Competence Certificate

The module examination is carried out in the form of partial examinations on the selected courses of the module, with which the minimum requirement at creditpoints is fulfilled. The learning control is described in each course. The overall score of the module is made up of the sub-scores weighted with creditpoints and is cut off after the first comma point.

Competence Goal

Students ...

- know why many existing security and privacy mechanisms are not usable and why many awareness/education/training approaches are not effective
- can explain for concrete examples why these are not usable / not effective including why people are likely to face problems with these
- can explain what mental models are, why they are important and how they can be identified
- know how to conduct a cognitive walkthrough to identify problems with existing mechanisms and approaches
- know how to conduct semi-structured interviews
- know how user studies in the security context differ from those conducted in other contexts
- can explain the process of human centered security / privacy by design
- know the advantages and disadvantages of various graphical password schemes
- know concepts such as just in time and place security interventions

Prerequisites

None

Content

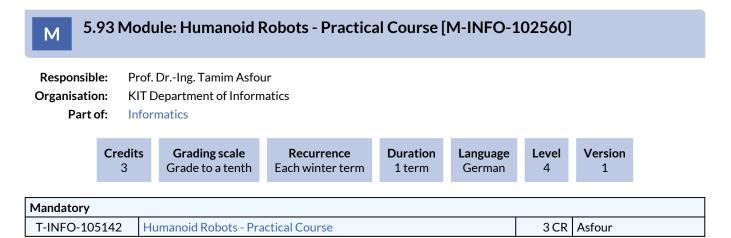
The history of information security and privacy has taught us that it takes more than technological innovation to develop effective security and privacy mechanisms: Many aspects of information security and privacy actually depend on both technical and human factors. As a result of focusing on the technical factors, we are seeing a persistent gap between theoretical security and actual security in real world which becomes an increasing problem in the age of digitalization. The gap is mainly caused by strong and actually unrealistic assumptions regarding the users' knowledge and behavior.

Human factors in security and privacy research addresses several types of security and privacy mechanisms, e.g., authentication mechanisms including text and graphical passwords, security and privacy indicators (such as the icons in the address bar of nowadays web browsers) and security and privacy interventions like warning messages, permission dialogs and security and privacy policies as well as corresponding configuration interfaces. Besides security and privacy mechanisms, human factors in security and privacy researchers deal with security and privacy awareness, education, and training approaches.

'Human factors in security & privacy' research areas are:

- identifying users' mental models using techniques such as (semi-)structured interviews or focus groups,
- evaluating existing approaches regarding their effectiveness in supporting their users in making secure decisions / informed decisions in the context of privacy using techniques such as cognitive walkthroughs, lab user studies or even field studies,
- proposing improved / new approaches and evaluating their effectiveness using the so called human-centered security / privacy by design approach.

This module discusses the various problems of existing security and privacy mechanisms and security and privacy awareness/ education/training approaches. The lecture addresses relevant psychological and sociological aspects which are important to know and to consider when developing more usable security/privacy mechanisms and more effective awareness/education/training approaches. The human centered security and privacy by design approach is introduced. Furthermore, some of the methodologies used in this area are explained and a subset of them is applied. Finally, positive examples, such as graphical passwords, are introduced and discussed. Note,the main part of the exercise is replicating an interview based study. The main focus of the lab will be to replicate a quantitative based user study.


Annotation

This new module can be chosen from winter term 2018/2019.

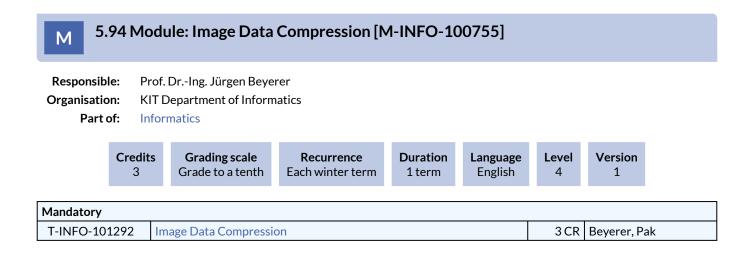
Workload

The total workload for this module is approximately 270 hours.

	92 Mc IFO-1			chine-Interactio	n in Anthr	opomatics	s: Basics	[M-	
Responsibl Organisatio Part c	Di n: Kl	r. Jü IT De	DrIng. Jürgen Beyer rgen Geisler epartment of Inform natics						
			Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1		
Mandatory									
T-INFO-102	1361	Hu	man-Machine-Intera	action in Anthropoma	tics: Basics		3 C R	Beyerer, G	eisler

Competence Goal

The participant understands and knows how to address and structure a complex task in the context of humanoid robotics. The student is able to solve a complex programming task in a small team.


Content

In this block course, a complex task will be implemented in a small team. The tasks address algorithmic questions in the context of humanoid robotics, such as semantic scene understanding, active perception, grasping and manipulation planning, action representation with movement primitives, programming by demonstration and imitation learning.

Workload

- Introductory event: 2h
- Practical work: 80h
- Preparation and presentation of the conducted work: 8h

Total: 90h

5.95 Module: Industrial Production II [M-WIWI-101471] Μ **Responsible:** Prof. Dr. Frank Schultmann **Organisation:** KIT Department of Economics and Management Part of: Economics and Management (Business Administration) Credits **Grading scale** Recurrence Duration Language Level Version 9 Grade to a tenth Each winter term 1 term German/English 4 2 Mandatory T-WIWI-102631 5,5 CR Schultmann Planning and Management of Industrial Plants Election block: Supplementary Courses (at most 1 item) T-WIWI-102763 Supply Chain Management with Advanced Planning Systems 3,5 CR Bosch, Göbelt T-WIWI-102826 **Risk Management in Industrial Supply Networks** 3.5 CR Schultmann, Wiens T-WIWI-102828 Supply Chain Management in the Automotive Industry 3,5 CR Heupel, Lang T-WIWI-103134 Schultmann **Project Management** 3,5 CR Election block: Supplementary Courses (at most 1 item) T-WIWI-102634 **Emissions into the Environment** 3.5 CR Karl T-WIWI-102882 International Management in Engineering and Production 3.5 CR Sasse T-WIWI-110512 Life Cycle Assessment 3,5 CR Schultmann

Competence Certificate

The assessment is carried out as partial exams (according to section 4 (2), 1 SPO) of the core course *Planning and Managing of Industrial Plants* [2581952] and one further single course of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

- Students shall be able to describe the tasks of tactical production management with special attention drawn upon industrial plants.
- Students shall understand the relevant tasks in plant management (projection, realisation and supervising tools for industrial plants).
- Students shall be able to describe the special need of a techno-economic approach to solve problems in the field of tactical production management.
- Students shall be proficient in using selected techno-economic methods like investment and cost estimates, plant layout, capacity planning, evaluation principles of production techniques, production systems as well as methods to design and optimize production systems.
- Students shall be able to evaluate techno-economical approaches in planning tactical production management with respect to their efficiency, accuracy and relevance for industrial use.

Prerequisites

The course Planning and Managing of Industrial Plants [2581952] and at least one additional activity are compulsory and must be examined.

Content

• Planning and Management of Industrial Plants: Basics, circulation flow starting from projecting to techno-economic evaluation, construction and operating up to plant dismantling.

Annotation

Apart from the core course the courses offered are recommendations and can be replaced by courses from the Module Industrial Production III.

Workload

Total effort will account to 270 hours (9 credit points) and can be allocated according to the credit point rating. Therefore, a course with 3.5 credits requires an effort of approximately 105h and a course with 5.5 credits 165h.

The total effort for each course consists of attending lectures and tutorials, examination times and the time an average student needs to prepare himself in order to pass the exam with an average grade.

5.96 Module: Industrial Production III [M-WIWI-101412] Μ **Responsible:** Prof. Dr. Frank Schultmann KIT Department of Economics and Management **Organisation:** Part of: Economics and Management (Business Administration) Credits **Grading scale** Recurrence Duration Language Level Version 9 Grade to a tenth Each summer term 1 term German/English 4 2 Mandatory T-WIWI-102632 **Production and Logistics Management** 5,5 CR Glöser-Chahoud, Schultmann Election block: Supplementary Courses from Module Industrial Production II (at most 1 item) T-WIWI-102634 **Emissions into the Environment** 3,5 CR Karl T-WIWI-102882 International Management in Engineering and Production 3,5 CR Sasse T-WIWI-110512 Life Cycle Assessment 3.5 CR Schultmann Election block: Supplementary Courses (at most 1 item) T-WIWI-102763 Supply Chain Management with Advanced Planning Systems 3,5 CR Bosch, Göbelt T-WIWI-102826 **Risk Management in Industrial Supply Networks** 3.5 CR Schultmann, Wiens T-WIWI-102828 Supply Chain Management in the Automotive Industry 3,5 CR Heupel, Lang T-WIWI-103134 Schultmann **Project Management** 3.5 CR

Competence Certificate

The assessment is carried out as partial exams (according to section 4 (2), 1 SPO) of the core course *Production and Logistics Management* [2581954] and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

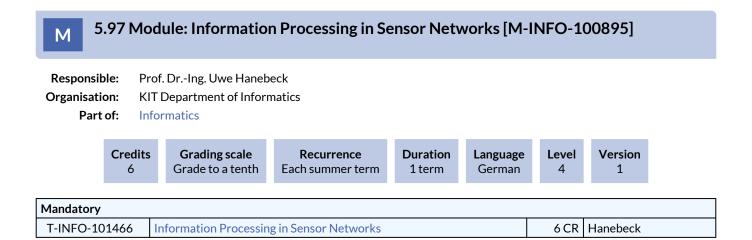
- Students describe the tasks concerning general problems of an operative production and logistics management.
- Students describe the planning tasks of supply chain management.
- Students use proficiently approaches to solve general planning problems.
- Students explain the existing interdependencies between planning tasks and applied methods.
- Students describe the mail goals and set-up of software supporting tools in production and logistics management (i.e. APS, PPS-, ERP- and SCM Systems).
- Students discuss the scope of these software tools and their general disadvantages.

Prerequisites

The course *Production and Logistics Management* [2581954] and at least one additional activity are compulsory and must be examined.

Content

- Planning tasks and exemplary methods of production planning and control in supply chain management.
- Supporting software tools in production and logistics management (APS, PPS- and ERP Systems).
- Project management in the field of production and supply chain management.


Annotation

Apart from the core course the courses offered are recommendations and can be replaced by courses from the Module Industrial Production II.

Workload

The total amount of work for this module is approx. 270 hours (9 credits). The allocation is made according to the credit points of the courses of the module.

The total number of hours per course results from the effort required to attend the lectures and exercises, as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.

5.98 Module: Information Systems in Organizations [M-WIWI-104068]

Responsible:	Prof. Dr. Alexander Mädche
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Business Administration)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	2 terms	German	4	4

Election block: Compulsory Elective Courses (at least 9 credits)			
T-WIWI-105777	Business Intelligence Systems	4,5 CR	Mädche, Nadj, Toreini
T-WIWI-110851	Designing Interactive Systems	4,5 CR	Mädche
T-WIWI-108437	Practical Seminar: Information Systems and Service Design	4,5 CR	Mädche

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- has a comprehensive understanding of conceptual and theoretical foundations of informations systems in organizations
- is aware of the most important classes of information systems used in organizations:. process-centric, information-centric and people-centric information systems.
- knows the most important activities required to execute in the pre-implementation, implementation and postimplementation phase of information systems in organizations in order to create business value
- has a deep understanding of key capabilities of business intelligence systems and/or interactive information systems used in organizations

Prerequisites

None

Content

During the last decades we witnessed a growing importance of Information Technology (IT) in the business world along with faster and faster innovation cycles. IT has become core for businesses from an operational company-internal and external customer perspective. Today, companies have to rethink their way of doing business, from an internal as well as an external digitalization perspective.

This module focuses on the internal digitalization perspective. The contents of the module abstract from the technical implementation details and focus on foundational concepts, theories, practices and methods for information systems in organizations. The students get the necessary knowledge to guide the successful digitalization of organizations. Each lecture in the module is accompanied with a capstone project that is carried out in cooperation with an industry partner.

Annotation

New module starting summer term 2018.

Workload

The total workload for this module is approximately 270 hours.

5.99 Module: Information Systems: Analytical and Interactive Systems [M-WIWI-104814]

Responsible:Prof. Dr.-Ing. Klemens Böhm
Prof. Dr. Alexander MädcheOrganisation:KIT Department of Economics and Management
Information Systems

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	2 terms	German	4	6

Election block: Compulsory Elective Area ()				
T-INFO-101305	Big Data Analytics	5 CR	Böhm	
T-WIWI-108715	Artificial Intelligence in Service Systems	4,5 CR	Satzger	
T-WIWI-111219	Artificial Intelligence in Service Systems - Applications in Computer Vision	4,5 CR	Satzger	
T-WIWI-109863	Business Data Analytics: Application and Tools	4,5 CR	Weinhardt	
T-WIWI-105777	Business Intelligence Systems	4,5 CR	Mädche, Nadj, Toreini	
T-INFO-101317	Deployment of Database Systems	5 CR	Böhm	
T-WIWI-110851	Designing Interactive Systems	4,5 CR	Mädche	
T-WIWI-111267	Intelligent Agent Architectures	4,5 CR	Geyer-Schulz	
T-WIWI-110915	Intelligent Agents and Decision Theory	4,5 CR	Geyer-Schulz	
T-INFO-107499	Context Sensitive Systems	5 CR	Beigl	
T-WIWI-102847	Recommender Systems	4,5 CR	Geyer-Schulz	
T-INFO-101326	Ubiquitous Computing	5 CR	Beigl	

Competence Certificate

The module examination takes place in the form of partial examinations in accordance with § 4 Para. 2 No. 1 - No. 3 SPO via courses of the module amounting to a total of at least 9 LP.

The overall score of the module is formed from the credit-weighted scores of the partial examinations and truncated after the first decimal place.

Competence Goal

The students

- are familiar with design principles of selected classes of modern analytical and interactive information systems and associated technologies
- know modern database concepts and application scenarios of modern database systems, understand the necessity of
 concepts for data analysis and can assess and compare approaches for the administration and analysis of large databases
 with regard to their effectiveness and applicability.
- know methods and techniques for designing analytical systems in the specific area of customer relationship management
- have knowledge of the basics and advanced methods and techniques of interactive information systems, especially context-sensitive and ubiquitous systems.

Content

In the module "Information Systems: Analytical and Interactive Systems" students learn about central design principles of selected classes of modern information systems and associated technologies. The module focuses on analytical and interactive information systems.

Workload

Total effort for 9 credit points: approx. 270 hours. The distribution is based on the credit points of the courses of the module (120-135h for courses with 4.5 credit points). The total number of hours per course results from the effort required to attend lectures and exercises, as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.

5.100 Module: Information Systems: Engineering and Transformation [M-WIWI-104812]

Responsible:	Prof. Dr. Sebastian Abeck Prof. Dr. Ali Sunyaev
Organisation:	KIT Department of Economics and Management
Fait OI.	information systems

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	2 terms	German	4	3

Election block: Com	pulsory Elective Area ()		
T-INFO-106061	Access Control Systems: Foundations and Practice	5 CR	Hartenstein
T-WIWI-109863	Business Data Analytics: Application and Tools	4,5 CR	Weinhardt
T-WIWI-109248	Critical Information Infrastructures	4,5 CR	Sunyaev
T-WIWI-110877	Engineering Interactive Systems	4,5 CR	
T-WIWI-109270	Human Factors in Security and Privacy	4,5 CR	Volkamer
T-INFO-101337	Internet of Everything	4 CR	Zitterbart
T-INFO-101323	IT-Security Management for Networked Systems	5 CR	Hartenstein
T-INFO-101319	Network Security: Architectures and Protocols	4 CR	Zitterbart
T-INFO-101300	Requirements Engineering	3 C R	Koziolek
T-INFO-101381	Software Architecture and Quality	3 CR	Reussner
T-WIWI-102895	Software Quality Management	4,5 CR	Oberweis
T-INFO-101271	Web Applications and Service-Oriented Architectures (II)	4 CR	Abeck

Competence Certificate

The module examination takes place in the form of partial examinations in accordance with § 4 Para. 2 No. 1 - No. 3 SPO via courses of the module amounting to a total of at least 9 LP.

The overall score of the module is formed from the credit-weighted scores of the partial examinations and truncated after the first decimal place.

Competence Goal

The student

- learns techniques and procedures for the systematic development of high-quality software.
- can apply software quality assessment methods, evaluate results, and compare certification models.
- can reflect the content of the key concepts and technologies required to develop service-oriented Web applications and model appropriate architectures, implement Web applications and assess their service characteristics.
- knows proven and novel concepts for the evaluation and analysis of (critical) IT infrastructures.
- knows methods and tools to successfully shape the digital transformation of companies under pursuit of a socio-technical paradigm.

Content

The module "Information Systems: Engineering and Transformation" deals with the systematic development and management of software, information systems/infrastructures and Internet-based services.

Workload

Total effort for 9 credit points: approx. 270 hours. The distribution is based on the credit points of the courses of the module (120-135h for courses with 4.5 credit points). The total number of hours per course results from the effort required to attend lectures and exercises, as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.

5.101 Module: Information Systems: Internet-based Markets and Services [M-WIWI-104813]

Responsible: Prof. Dr. Christof Weinhardt

Organisation:

KIT Department of Economics and Management

Part of: Information Systems

Election block: Compulsory Elective Area ()

Election block. Com	puisory Elective Alea ()		
T-WIWI-109246	Digital Health	4,5 CR	Sunyaev
T-WIWI-110280	Digital Services: Business Models and Transformation	4,5 CR	Satzger
T-WIWI-107501	Energy Market Engineering	4,5 CR	Weinhardt
T-WIWI-110877	Engineering Interactive Systems	4,5 CR	
T-WIWI-102639	Business Models in the Internet: Planning and Implementation	4,5 CR	Weinhardt
T-WIWI-102640	Market Engineering: Information in Institutions	4,5 CR	Weinhardt

Competence Certificate

The module examination takes place in the form of partial examinations in accordance with § 4 Para. 2 No. 1 - No. 3 SPO via courses of the module amounting to a total of at least 9 LP.

The overall score of the module is formed from the credit-weighted scores of the partial examinations and truncated after the first decimal place.

Competence Goal

The student

- understands the importance and potential of digitizing products and services
- can design digital markets and services with the associated business models.
- knows methods and tools to successfully design the digital transformation of products and services.
- acquires specific competencies for the digitization of domain-specific services, including healthcare and energy.

Content

The module "Information Systems: Internet-based Markets and Services" focuses on the design of Internet-based services and markets from an economic and technical point of view.

Workload

Total effort for 9 credit points: approx. 270 hours. The distribution is based on the credit points of the courses of the module (120-135h for courses with 4.5 credit points). The total number of hours per course results from the effort required to attend lectures and exercises, as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.

5.102 Module: Innovation and Growth [M-WIWI-101478]

Responsible:	Prof. Dr. Ingrid Ott
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Economics)

	Credits 9	Grading scale Grade to a tenth	Recurrence Each term	Duration 1 term	Language German/English	Level 4	Version 4
on blo	ck: Compul	lsory Elective Course	es (between 9 an	d 10 credits)			

T-WIWI-109194	Dynamic Macroeconomics	4,5 CR	Brumm
T-WIWI-102840	Innovation Theory and Policy	4,5 CR	Ott
T-WIWI-111318	Growth and Development	4,5 CR	Ott

Competence Certificate

Electio

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module seperately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students shall be given the ability to

- know the basic techniques for analyzing static and dynamic optimization models that are applied in the context of microand macroeconomic theories
- understand the important role of innovation to the overall economic growth and welfare
- identify the importance of alternative incentive mechanisms for the emergence and dissemination of innovations
- explain, in which situations market interventions by the state, for example taxes and subsidies, can be legitimized, and evaluate them in the light of economic welfare

Prerequisites

None

Content

The module includes courses that deal with issues of innovation and growth in the context of micro-and macroeconomic theories. The dynamic analysis makes it possible to analyze the consequences of individual decisions over time, and sheds light on the tension between static and dynamic efficiency in particular. In this context is also analyzed, which policy is appropriate to carry out corrective interventions in the market and thus increase welfare in the presence of market failure.

Recommendation

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Workload

Total expenditure of time for 9 credits: 270 hours

Attendance time per lecture: 3x14h

Preparation and wrap-up time per lecture: 3x14h

Rest: Exam Preparation

The exact distribution is subject to the credits of the courses of the module.

M 5.103 Module: Innovation Economics [M-WIWI-101514]

Responsible:	Prof. Dr. Ingrid Ott
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Economics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	2 terms	German/English	4	2

Election block: Com	pulsory Elective Courses (between 9 and 10 credits)		
T-WIWI-102840	Innovation Theory and Policy	4,5 CR	Ott
T-WIWI-102906	Methods in Economic Dynamics	1,5 CR	Ott
T-WIWI-109864	Product and Innovation Management	3 C R	Klarmann
T-WIWI-102789	Seminar in Economic Policy	3 C R	Ott

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students shall be given the ability to

- understand the important role of innovation for economic growth and welfare
- understand the relevance of alternative incentive mechanisms for the emergence and dissemination of innovations
- know basic terms of product and innovation concepts
- know fundamental concepts of innovation management
- work with fundamental theoretical innovation models and to implement them in appropriate computer algebra systems
- query appropriate data sources and to analyse and visualise them using statistical methods

Prerequisites

None

Content

The module provides students with knowledge about implications of technological and organizational changes.

Addressed economic issues are incentives for developing innovations, diffusion processes, and associated effects. In this context the module analyses appropriate policies in the presence of market failures to take corrective action on the market process and thus to increase the dynamic efficiency of economies.

Furthermore, the module offers the possibility to learn about different aspects of theoretical modelling of innovation-based growth as a part of the seminar and the methods-workshop. This includes the implementation of formal models in computer algebra systems as well as recording, processing and econometric analysis of related data from relational databases (concerning for example patents or trademarks). Moreover, methods of network theory are applied.

Finally, the module emphasises the business perspective: Issues of all stages of innovation processes will be discussed, from innovation strategies up to the market commercialisation.

Recommendation

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012] and Economics II [2600014]. Further, it is assumed that students have interest in using quantiative-mathematical methods.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

5.104 Module: Innovation Management [M-WIWI-101507] Μ **Responsible:** Prof. Dr. Marion Weissenberger-Eibl **Organisation:** KIT Department of Economics and Management Part of: Economics and Management (Business Administration) Credits **Grading scale** Recurrence Duration Language Level Version 9 Grade to a tenth Each term 1 term German/English 4 7 Mandatory T-WIWI-102893 Weissenberger-Eibl Innovation Management: Concepts, Strategies and Methods 3 C R Election block: Compulsory Elective Courses (1 item) T-WIWI-102873 **Current Issues in Innovation Management** 3 CR Weissenberger-Eibl T-WIWI-110867 The negotiation of open innovation 3 CR Beyer T-WIWI-108875 **Digital Transformation and Business Models** 3 CR Koch T-WIWI-102852 3 CR Weissenberger-Eibl **Case Studies Seminar: Innovation Management** T-WIWI-108774 Analyzing and Evaluating Innovation Processes 3 CR Beyer T-WIWI-110234 **Innovation Processes Live** 3 CR Beyer Methods in Innovation Management T-WIWI-110263 3 CR Koch T-WIWI-102853 3 CR Koch Roadmapping T-WIWI-110987 Seminar Methods along the Innovation process 3 CR Beyer T-WIWI-110986 3 CR Strategic Foresight China Weissenberger-Eibl T-WIWI-109932 3 CR A Closer Look at Social Innovation Beyer T-WIWI-102858 3 CR Koch **Technology Assessment** T-WIWI-102854 **Technologies for Innovation Management** 3 CR Koch Election block: Supplementary Courses (1 item) T-WIWI-102873 **Current Issues in Innovation Management** 3 CR Weissenberger-Eibl 3 CR T-WIWI-102866 **Design Thinking** Terzidis T-WIWI-110867 The negotiation of open innovation 3 CR Beyer T-WIWI-108875 **Digital Transformation and Business Models** 3 CR Koch T-WIWI-102833 Entrepreneurial Leadership & Innovation Management 3 CR Terzidis T-WIWI-102864 3 CR Terzidis Entrepreneurship 3 CR Weissenberger-Eibl T-WIWI-102852 **Case Studies Seminar: Innovation Management** T-WIWI-108774 Analyzing and Evaluating Innovation Processes 3 CR Beyer T-WIWI-110234 **Innovation Processes Live** 3 CR Beyer T-WIWI-110263 Methods in Innovation Management 3 CR Koch T-WIWI-102853 3 CR Koch Roadmapping T-WIWI-110987 Seminar Methods along the Innovation process 3 CR Beyer T-WIWI-110986 Strategic Foresight China 3 CR Weissenberger-Eibl T-WIWI-109932 A Closer Look at Social Innovation 3 CR Beyer T-WIWI-102854 **Technologies for Innovation Management** 3 CR Koch T-WIWI-102858 **Technology Assessment** 3 CR Koch

Competence Certificate

See German version.

Competence Goal

Students develop a comprehensive understanding of the innovation process and its conditionality. There is an additional focus on the concepts and processes which are of particular relevance with regard to shaping the entire process. Various strategies and methods are then taught based on this.

After completing the module, students should have developed a systemic understanding of the innovation process and be able to shape this by developing and applying suitable methods.

Prerequisites

The lecture "Innovation Management: Concepts, Strategies and Methods" and one of the seminars of the chair for Innovation and Technology Management are compulsory. The third course can be chosen from the courses of the module.

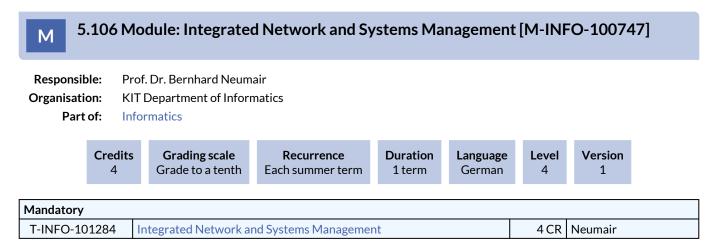
Content

The Innovation Management: Concepts, Strategies and Methods lecture course teaches concepts, strategies and methods which help students to form a systemic understanding of the innovation process and how to shape it. Building on this holistic understanding, the seminar courses then go into the subjects in greater depth and address specific processes and methods which are central to innovation management.

Recommendation

None

Workload


The total workload for this module is approximately 270 hours. For further information see German version.

5.105 Module: Innovative Concepts for Programming Industrial Robots [M-INFO-100791]

Responsible:Prof. Dr.-Ing. Björn HeinOrganisation:KIT Department of Informatics

Part of: Informatics

_							
C	Credits 4	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1
Mandatory							
T-INFO-101328 Innovative Concepts for Programming Industrial Robots						4 CR	Hein

Recommendation

Siehe Teilleistung

M 5.107 Module: Intellectual Property Law [M-INFO-101215]

Responsible:	Prof. Dr. Thomas Dreier
Organisation:	KIT Department of Informatics
Part of:	Law

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	2 terms	German	4	3

Election block: Intel	lectual Property Law (at least 1 item as well as at least 9 credits)		
T-INFO-102036	Computer Contract Law	3 C R	Bartsch
T-INFO-101308	Copyright	3 C R	Dreier
T-INFO-101310	Patent Law	3 C R	Hössle, Koch
T-INFO-101313	Trademark and Unfair Competition Law	3 C R	Matz
T-INFO-101307	Internet Law	3 C R	Dreier
T-INFO-108462	Selected Legal Isues of Internet Law	3 CR	Dreier

Prerequisites None

5.108 Module: Intelligent Systems and Services [M-WIWI-101456]

 Responsible:
 Prof. Dr. York Sure-Vetter

 Organisation:
 KIT Department of Economics and Management

 Part of:
 Informatics

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	1 term	German/English	4	7

Election block: Com	pulsory Elective Courses (between 9 and 10 credits)		
T-WIWI-102661	Database Systems and XML	4,5 CR	Oberweis
T-WIWI-106423	Information Service Engineering	4,5 CR	Sack
T-WIWI-110548	Advanced Lab Informatics (Master)	4,5 CR	Professorenschaft des Fachbereichs Informatik
T-WIWI-102666	Knowledge Discovery	4,5 CR	Färber
T-WIWI-110848	Semantic Web Technologies	4,5 CR	Käfer

Competence Certificate

The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Algorithms for Internet Applications [T-WIWI-102658]: The examination will be offered latest until summer term 2017 (repeaters only).

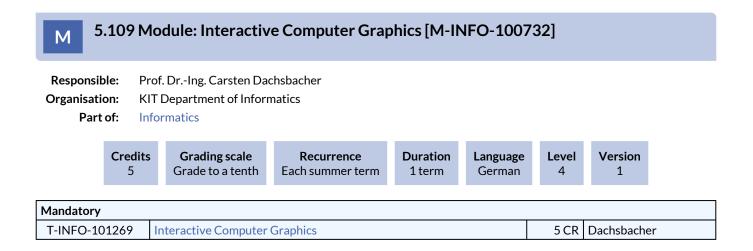
Competence Goal

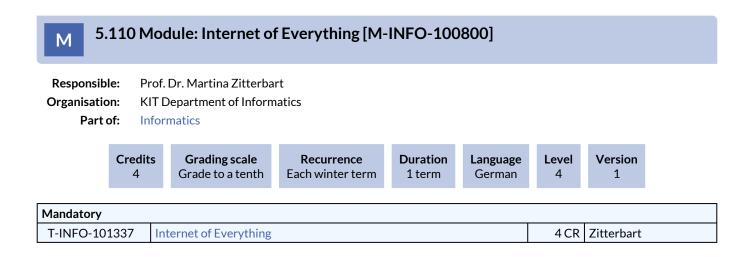
Students

- know the different machine learning procedures for the supervised as well as the unsupervised learning,
- identify the pros and cons of the different learning methods,
- apply the discussed network learning methods in specific scenarios,
- compare the practicality of methods and algorithms with alternative approaches.

Prerequisites

None

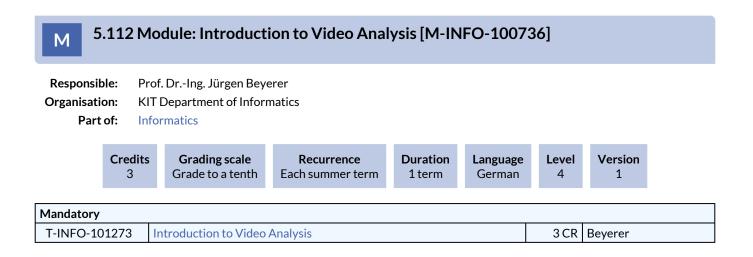

Content

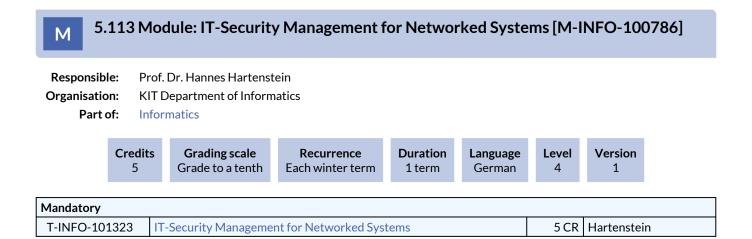

In the broader sense learning systems are understood as biological organisms and artificial systems which are able to change their behavior by processing outside influences. Network leaning methods based on symbolic, statistic and neuronal approaches are the focus of Computer Sciences.

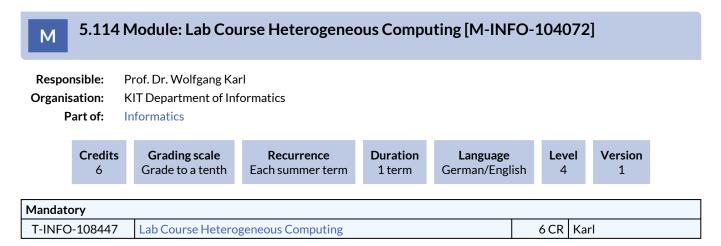
In this module the most important network learning methods are introduced and their applicability is discussed with regard to different information sources such as data texts and images considering especially procedures for knowledge acquirement via data and text mining, natural analogue procedures as well as the application of organic learning procedures within the finance sector.

Annotation

Detailed information on the recognition of examinations in the field of Informatics can be found at http://www.aifb.kit.edu/web/ Auslandsaufenthalt.





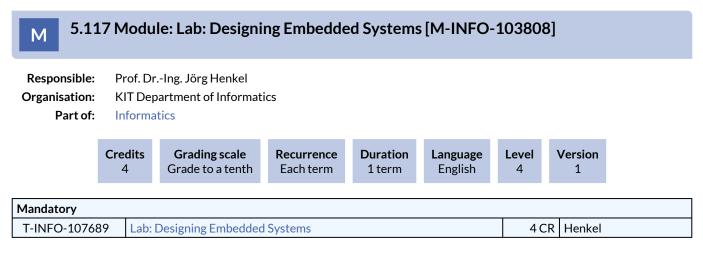

5.111 Module: Introduction to Bioinformatics for Computer Scientists [M-INFO-100749]

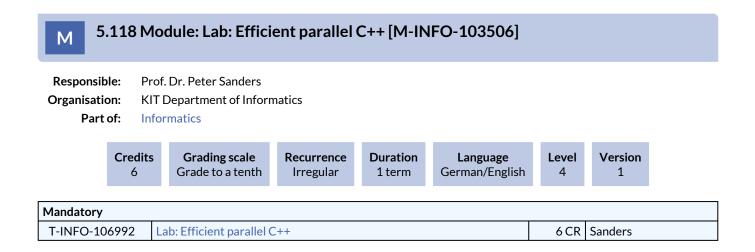
Responsible:Prof. Dr. Alexandros StamatakisOrganisation:KIT Department of InformaticsPart of:Informatics

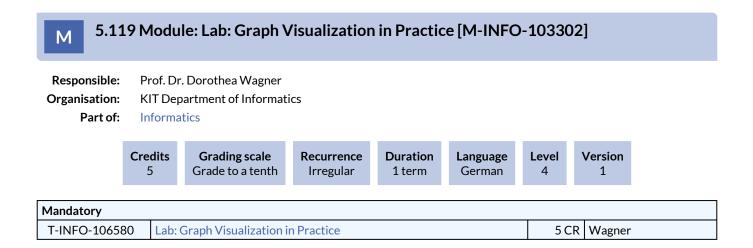
C	Credits 3	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1
Mandatory							
T-INFO-10128	T-INFO-101286 Introduction to Bioinformatics for Computer Scientists						Stamatakis

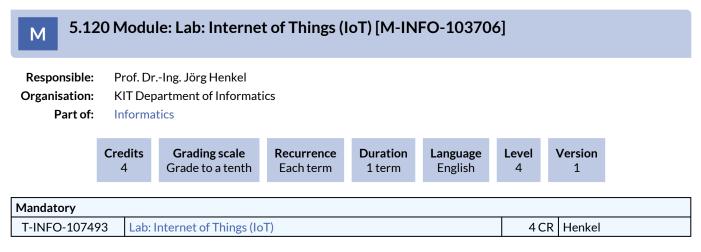
5.115 Module: Lab Course: Natural Language Processing and Software Engineering [M-INFO-103138]

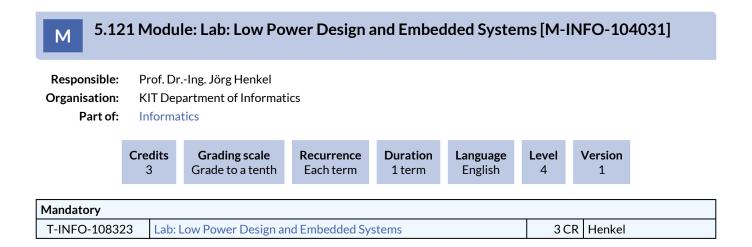
Responsible: Prof. Dr.-Ing. Anne Koziolek

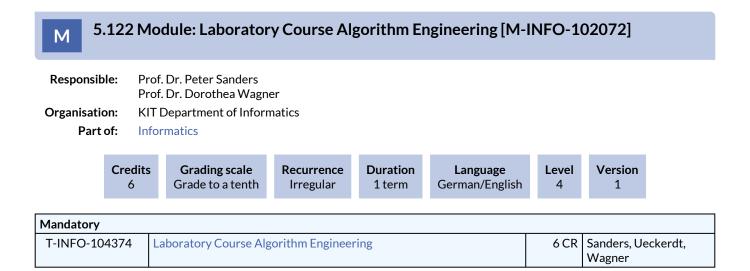

Organisatic Part o			epartment of Inform matics	atics					
	Credit 5	S	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1	
Mandatory									
T-INFO-10	T-INFO-106239 Lab Course: Natural Language Processing and Software Engineering 5 CR Koziolek								

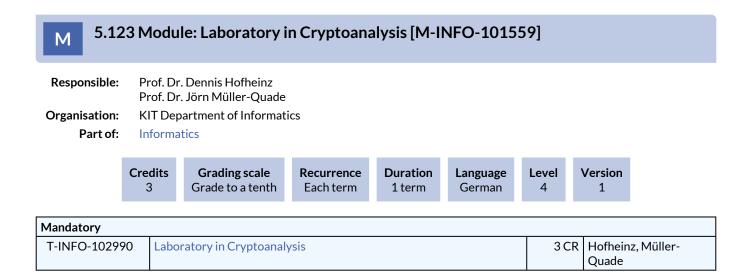

5.116 Module: Lab: Designing Embedded Application-Specific Processors [M-INFO-101631]

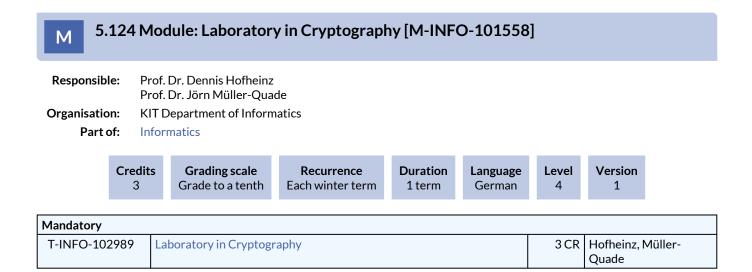

Responsible:Prof. Dr.-Ing. Jörg HenkelOrganisation:KIT Department of Informatics

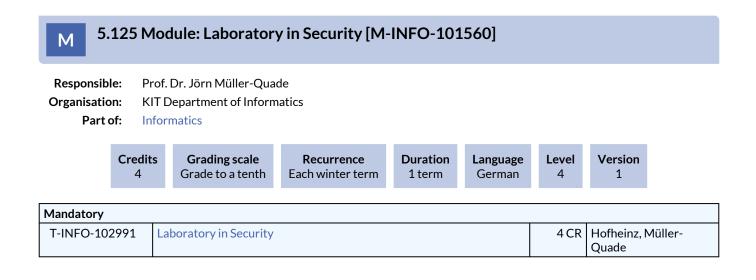

Part of: Informatics

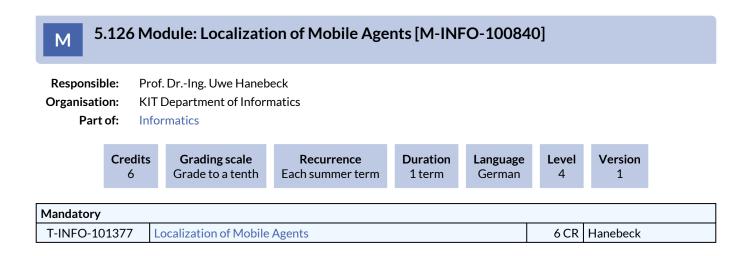

Credit 4	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1
Mandatory						
T-INFO-103115	T-INFO-103115 Lab: Designing Embedded Application-Specific Processors					Henkel

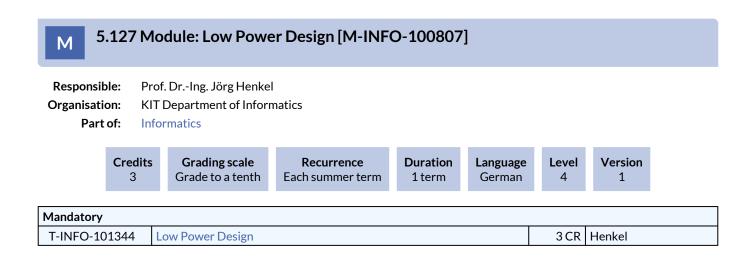












5.128 Module: Machine Learning [M-WIWI-103356]

Responsible: Organisation:

Prof. Dr.-Ing. Johann Marius Zöllner

n: KIT Department of Economics and Management

Part of: Informatics

	Credits 9	Grading scale Grade to a tenth	Recurrence Each term	Duration 1 term	Language German/English	Level 4	Version 2
Election bloc	k: Comp	ulsory Elective Course	es (between 9 an	d 10 credits)			
T-WIWI-10	6340	Machine Learning 1 - B	Basic Methods			4,5 CR	Zöllner

T-WIWI-106341	Machine Learning 2 – Advanced Methods	4,5 CR	Zöllner
T-WIWI-109985	Project Lab Cognitive Automobiles and Robots	4,5 CR	Zöllner
T-WIWI-109983	Project Lab Machine Learning	4,5 CR	Zöllner

Competence Certificate

The module examination is carried out in the form of partial examinations on the selected courses of the module, with which the minimum requirement at creditpoints is fulfilled. The learning control is described in each course. The overall score of the module is made up of the sub-scores weighted with creditpoints and is cut off after the first comma point.

Competence Goal

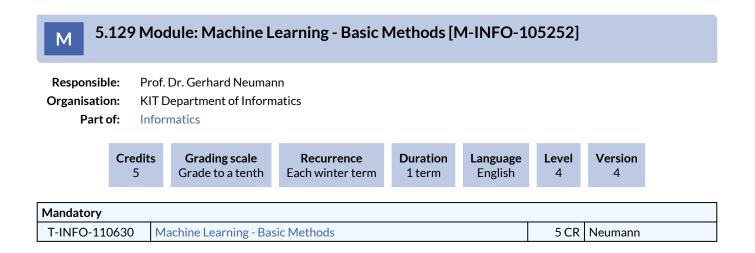
- Students gain knowledge of the basic methods in the field of machine learning.
- Students understand advanced concepts of machine learning and their application.
- Students can classify, formally describe and evaluate methods of machine learning.
- Students can use their knowledge to select suitable models and methods for selected problems in the field of machine learning.

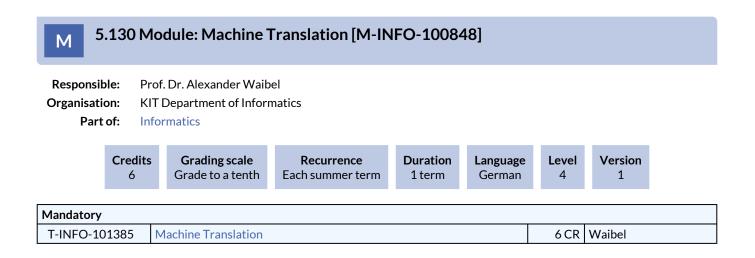
Prerequisites

None

Content

The subject area of ??machine intelligence and, in particular, machine learning, taking into account real challenges of complex application domains, is a rapidly expanding field of knowledge and the subject of numerous research and development projects.


The lecture "Machine Learning 1" covers both symbolic learning methods such as inductive learning (learning from examples, learning by observation), deductive learning (explanation-based learning) and learning from analogies, as well as subsymbolic techniques such as neural networks, support vector machines, genetics Algorithms and reinforcement learning. The lecture introduces the basic principles as well as fundamental structures of learning systems and the learning theory and examines the previously developed algorithms. The design and operation of learning systems is presented and explained in some examples, especially in the fields of robotics, autonomous mobile systems and image processing.


The lecture "Machine Learning 2" deals with advanced methods of machine learning such as semi-supervised and active learning, deep neural networks (deep learning), pulsed networks, hierarchical approaches, e.g. As well as dynamic, probabilistic relational methods. Another focus is the embedding and application of machine learning methods in real systems.

The lecture introduces the latest basic principles as well as extended basic structures and elucidates previously developed algorithms. The structure and the mode of operation of the methods and methods are presented and explained by means of some application scenarios, especially in the field of technical (sub) autonomous systems (robotics, neurorobotics, image processing, etc.).

Workload

The total workload for this module is approximately 270 hours.

5.131 Module: Management Accounting [M-WIWI-101498]

Responsible:	Prof. Dr. Marcus Wouters
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Business Administration)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	2 terms	English	4	2

Mandatory			
T-WIWI-102800	Management Accounting 1	4,5 CR	Wouters
T-WIWI-102801	Management Accounting 2	4,5 CR	Wouters

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 13 SPO) of the courses of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- are familiar with various management accounting methods,
- can apply these methods for cost estimation, profitability analysis, and product costing,
- are able to analyze short-term and long-decisions with these methods,
- have the capacity to devise instruments for organizational control.

Prerequisites

None

Content

The module consists of two courses "Management Accounting 1" and "Management Accounting 2". The emphasis is on structured learning of management accounting techniques.

Annotation

The following courses are part of this module:

- The course Management Accounting 1, which is offered in every sommer semester
- The course Management Accounting 2, which is offered in every winter semester

Workload

5.132 Module: Market Engineering [M-WIWI-101446] Μ **Responsible:** Prof. Dr. Christof Weinhardt **Organisation:** KIT Department of Economics and Management Part of: Economics and Management (Business Administration) Credits **Grading scale** Recurrence Duration Language Level Version 9 Grade to a tenth Each term 1 term German/English 4 7 Mandatory T-WIWI-102640 4,5 CR Weinhardt Market Engineering: Information in Institutions Election block: Supplementary Courses (4,5 credits) T-WIWI-102613 Auction Theory 4,5 CR Ehrhart T-WIWI-108880 Blockchains & Cryptofinance 4,5 CR Schuster, Uhrig-Homburg T-WIWI-110797 eFinance: Information Systems for Securities Trading 4.5 CR Weinhardt T-WIWI-107501 **Energy Market Engineering** 4,5 CR Weinhardt T-WIWI-107503 Energy Networks and Regulation 4,5 CR Weinhardt T-WIWI-102614 4.5 CR Weinhardt **Experimental Economics** T-WIWI-111109 KD²Lab Hands-On Research Course: New Ways and Tools in 4,5 CR Weinhardt **Experimental Economics** T-WIWI-107504 **Smart Grid Applications** 4,5 CR Weinhardt

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The students

- know the design criterias of market mechanisms and the systematic approach to create new markets,
- understand the basics of the mechanism design and auction theory,
- analyze and evaluate existing markets regarding the missing incentives and the optimal solution of a given market mechanism, respectively,
- develop solutions in teams.

Prerequisites

The course Market Engineering: Information in Institutions [2540460] is compulsory and must be examined.

Content

This module explains the dependencies between the design von markets and their success. Markets are complex interaction of different institution and participants in a market behave strategically according to the market rules. The development and the design of markets or market mechanisms has a strong influence on the behavior of the participants. A systematic approach and a thorough analysis of existing markets is inevitable to design, create and operate a market place successfully. the approaches for a systematic analysis are explained in the mandatory course *Market Engineering* [2540460] by discussing theories about mechanism design and institutional economics. The student can deepen his knowledge about markets in a second course.

Recommendation

None

Annotation

The course "Computational Economics" [2590458] will not be offered any more in this module from winter term 2015/2016 on. The examination will be offered latest until summer term 2016 (repeaters only).

Workload

5.133 Module: Marketing and Sales Management [M-WIWI-105312]

Responsible: Organisation:

le: Prof. Dr. Martin Klarmann

on: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

	Credits 9	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German/Englis	Lev n 4			
Election	block: Com	pulsory Elective Cou	ırses (at least 1 item)						
T-WIW	I-111100	Current Directions	in Consumer Psycholo	gy		3 CR	Scheibehenne		
T-WIW	I-111099	Judgment and Deci	sion Making			4,5 CR	Scheibehenne		
T-WIW	I-107720	Market Research				4,5 CR Klarmann			
T-WIW	I-109864	Product and Innova	Product and Innovation Management			3 CR	Klarmann		
Election	block: Supp	lementary Courses ((at most 1 item)						
T-WIW	I-106981	Digital Marketing a	nd Sales in B2B			1,5 CR	Klarmann, Ko	nhäuser	
T-WIW	I-110985	International Busin	ess Development and S	Sales		6 CR	Casenave , Kla Terzidis	armann,	
T-WIW	I-102835	Marketing Strategy	v Business Game			1,5 CR	R Klarmann		
T-WIW	I-102891 Price Negotiation and Sales Presentations			1,5 CR Klarmann, Schröder		röder			
T-WIW	I-111246	Pricing Excellence				1,5 CR	Bill, Klarmann		
T-WIW	I-111315	Psychological Proce	esses in Individual Dec	isions		4,5 CR	Scheibehenne		

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. For passing the module exam in every singled partial exam the respective minimum requirements has to be achieved.

When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- have an advanced knowledge about central marketing contents
- have a fundamental understanding of the marketing instruments
- know and understand several strategic concepts and how to implement them
- are able to implement their extensive marketing knowledge in a practical context
- know several qualitative and quantitative approaches to prepare decisions in Marketing
- have the theoretical knowledge to write a master thesis in Marketing
- have the theoretical knowledge to work in/together with the Marketing department

Prerequisites

None

Content

The aim of this module is to deepen central marketing contents in different areas.

Annotation

Please note that none of the listed 1.5-ECTS courses will take place in the winter semester 2020/21 due to a research semester. The courses concerned will probably be offered again from WS21/22 onwards. Please note that only one of the listed 1,5-ECTS courses can be chosen in the module.

Workload

The total workload for this module is approximately 270 hours.

5.134 Module: Mathematical Programming [M-WIWI-101473] Μ **Responsible:** Prof. Dr. Oliver Stein **Organisation:** KIT Department of Economics and Management Part of: Economics and Management (Operations Research) Credits **Grading scale** Recurrence Duration Language Level Version 9 Grade to a tenth Each term 1 term German/English 4 7 Election block: Compulsory Elective Courses (at most 2 items) T-WIWI-102719 4,5 CR Stein Mixed Integer Programming I T-WIWI-102726 **Global Optimization I** 4,5 CR Stein T-WIWI-103638 Global Optimization I and II 9 C R Stein T-WIWI-102856 **Convex Analysis** 4,5 CR Stein T-WIWI-102724 4,5 CR Stein Nonlinear Optimization I T-WIWI-103637 9 C R Nonlinear Optimization I and II Stein T-WIWI-102855 Parametric Optimization 4,5 CR Stein Election block: Supplementary Courses (at most 2 items) T-WIWI-106548 4,5 CR Rebennack Advanced Stochastic Optimization T-WIWI-102720 Mixed Integer Programming II 4,5 CR Stein 4,5 CR T-WIWI-102727 **Global Optimization II** Stein T-WIWI-102723 Graph Theory and Advanced Location Models 4,5 CR Nickel T-WIWI-106549 4,5 CR Rebennack Large-scale Optimization T-WIWI-111247 Mathematics for High Dimensional Statistics 4,5 CR Grothe T-WIWI-103124 **Multivariate Statistical Methods** 4,5 CR Grothe T-WIWI-102725 Nonlinear Optimization II 4,5 CR Stein T-WIWI-102715 **Operations Research in Supply Chain Management** 4,5 CR Nickel 4,5 CR Sudermann-Merx T-WIWI-110162 **Optimization Models and Applications**

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

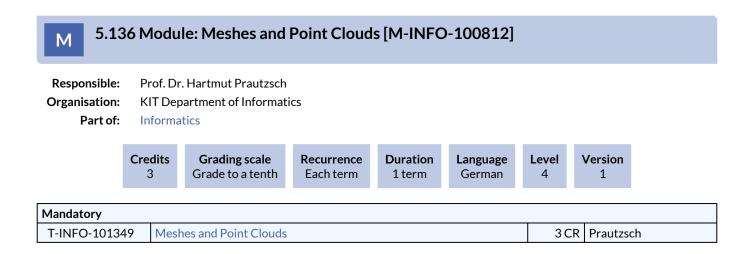
The student

- names and describes basic notions for advanced optimization methods, in particular from continuous and mixed integer programming,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions,
- identifies drawbacks of the solution methods and, if necessary, is able to makes suggestions to adapt them to practical problems.

Prerequisites

At least one of the courses "Mixed Integer Programming I", "Parametric Optimization", "Convex Analysis", "Nonlinear Optimization I" and "Global Optimization I" has to be taken.

Content


The modul focuses on theoretical foundations as well as solution algorithms for optimization problems with continuous and mixed integer decision variables.

Annotation

The lectures are partly offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu). For the lectures of Prof. Stein a grade of 30 % of the exercise course has to be fulfilled. The description of the particular lectures is more detailed.

Workload

M 5	.135 M	1odule: Medical F	Robotics [M-INFO	-100820]				
Responsil Organisati Part	Ju on: Kl	rof. DrIng. Torsten Kra unProf. Dr. Franziska I IT Department of Infor Iformatics	Mathis-Ullrich					
	Credits 3	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 1	
Mandatory	Mandatory							
T-INFO-10	01357	Medical Robotics				3 CR	Kröger, Mat	his-Ullrich

5.137 Module: Microeconomic Theory [M-WIWI-101500]

Responsible:	Prof. Dr. Clemens Puppe
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Economics)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	2 terms	German/English	4	3

Election block: Com	Election block: Compulsory Elective Courses (at least 9 credits)						
T-WIWI-102609	Advanced Topics in Economic Theory	4,5 CR	Mitusch				
T-WIWI-102861	Advanced Game Theory	4,5 CR	Ehrhart, Puppe, Reiß				
T-WIWI-102859	Social Choice Theory	4,5 CR	Puppe				
T-WIWI-102613	Auction Theory	4,5 CR	Ehrhart				
T-WIWI-105781	Incentives in Organizations	4,5 CR	Nieken				

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

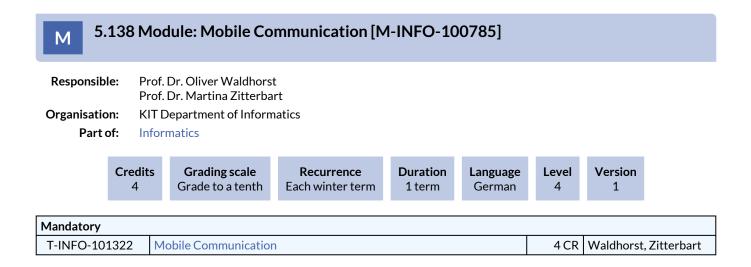
The overall grade of the the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

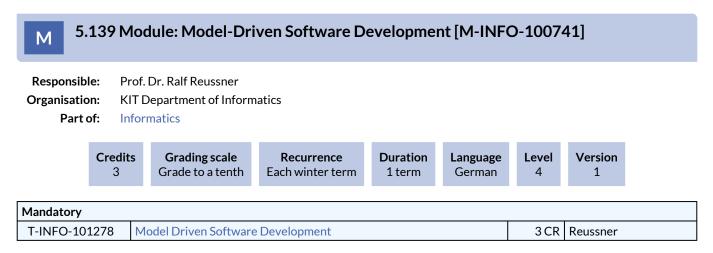
Competence Goal

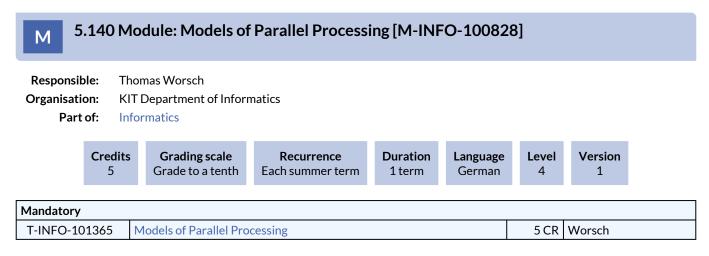
Students

- are able to model practical microoeconomic problems mathematically and to analyze them with respect to positive and normative questions,
- understand individual incentives and social outcomes of different institutional designs.

An example of a positive question is: which regulation policy results in which firm decistions under imperfect competition? An example of a normative question is: which voting rule has appealing properties?

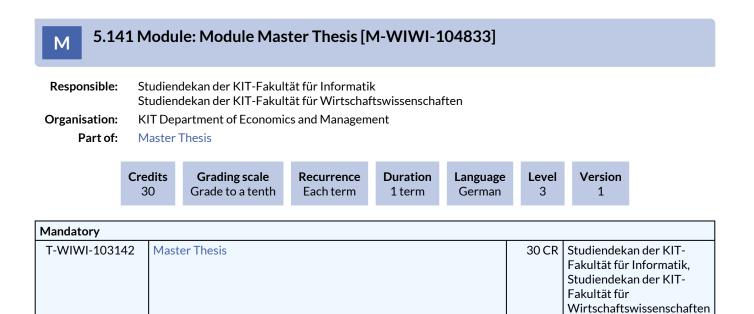

Prerequisites


None


Content

The student should gain an understanding of advanced topics in economic theory, game theory and welfare economics. Core topics are, among others, strategic interactions in markets, cooperative and non-cooperative bargaining (Advanced Game Theory), allocation under asymmetric information and general equilibrium over time (Advanced Topics in Economic Theory), voting and the aggregation of preferences and judgements (Social Choice Theory).

Workload



Recommendation

Siehe Teilleistung

Competence Certificate

Examination by two examiners from the two faculties. For details refer to examination regulation. The examiner has to be involved in the degree programme. Involved in the degree programme are the persons that coordinate a module or a lecture of the degree programme.

Competence Goal

The student can independently handle a complex and unfamiliar subject based on scientific criteria and the current state of research.

He/she is in a position to critically analyze and structure the researched information as well as derive principles and regularities. He/she knows how to apply the thereby achieved results to solve the task at hand. Taking into account this knowledge and his/her interdisciplinary knowledge, he/she can draw own conclusions, derive improvement potentials, propose and implement sciencebased decisions.

This is basically also done under consideration of social and/or ethical aspects.

He/she can interpret, evaluate and if required, graphically present the obtained results.

He/she is in a position to sensibly structure a research paper, document results and clearly communicate the results in scientific form.

Prerequisites

Regulated in \$14 of the examination regulation.

Content

- The master thesis shows that the candidate can autonomously investigate a problem from his discipline with scientific methods according to the state-of-the-art of the discipline within a specified time period.
- The master thesis can be written in German or English.
- The topic of a master thesis can be accepted or chosen by each of the examiners according to examination regulation. The examiner accepting a topic for a master thesis acts as the first supervisor of this thesis.
- Writing a master thesis with a supervisor who is not a member of the two faculties participating in the degree programme (Departement of Informatics, Department of Economics and Management) requires acceptance by the examination board of the degree programme. The candidate must have an opportunity to make suggestions for the topic of the master thesis.
- Candidates can write a master thesis in teams. However, this requires that the contribution and performance of each candidate to the thesis is identifiable according to objective criteria which allow a unique delineation of each candidate's contribution. The contribution of each candidate regarded in isolation must fulfill the requirements a individual master thesis.
- In exceptional cases and upon request of the candidate, the chairman of the examination board chooses a supervisor and requests that this supervisor provides the candidate with a topic for the master thesis within 4 weeks after the request. In this case, the candidate is informed by the chairman of the examination board about the topic selected.
- Topic, specification of research tasks and the volume of the master thesis should be limited by the supervisor, so that the master thesis can be written with the assigned workload of 30 credits (750-900h).
- The master thesis must contain the following declaration of the candidate: "I truthfully assure that I have autonomously written this master thesis. I have quoted all sources used precisely and completely. I have labelled everything which has been taken from the work of others with or without change." A master thesis without this declaration will not be accepted.
- The date of the assignment of the topic to a candidate as well as the date of delivery of the master thesis should be registered at the examination board. The candidate can return a topic for the master thesis only one time and only within a period of two month after he has received the topic. Upon a request of the candidate with reasons supporting an extension, the examination board may extend the deadline for the delivery of the master thesis by a maximum of three months. A master thesis not delivered within time is graded as "fail" except when the candidate is not responsible for this delay (e.g. protection of motherhood).
- The master thesis is reviewed and graded by the supervisor and the additional examiner. The team of supervisor and examiner must represent both faculties participating in the degree programme (Department of Informatics, Department of Economics and Management). At least one of the two must be professor or junior professor. If the grades of the supervisor and the examiner differ, the examination board sets the mark within this limit.
- Reviewing and grading should be done within 8 weeks after delivery of the master thesis.

Workload

5.142 Module: Multicore Programming in Practice: Tools, Models, Languages [M-INFO-100985]

Responsible: Prof. Dr. Walter Tichy

Organisation: KIT Department of Informatics Part of: Informatics

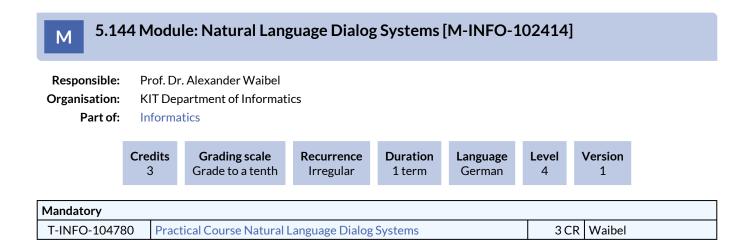
	Credits 6	s Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1
Mandatory							
T-INFO-101565 Multicore Programming in Practice: Tools, Models, Languages					6 CR	Tichy	

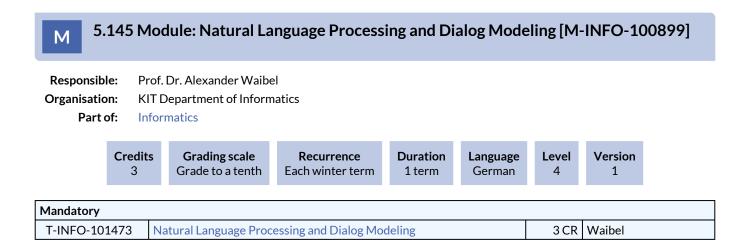
5.143 Module: Multi-dimensional Signal Processing and Image Exploitation with Graphic Cards and Other Manycore-Processors [M-INFO-103154]

Responsible:	Prof. DrIng. Jürgen Beyerer			
Organisation:	KIT Department of Informatics			
Part of:	Informatics			

|--|

T-INFO-106278Multi-Dimensional Signal Processing and Image Exploitation with Graphic Cards and Other Manycore-Processors	3 CR	Beyerer, Perschke
---	------	-------------------


Competence Goal


The student will gain an overview about the current parallel hardware architectures, which can be used for solving image processing problems. They will be able to analyse, parallelize and optimize image processing algorithms with respect to different hardware platforms. The introduction into OpenCL will give them the ability to implement the algorithms on graphic cards and multi-core processors.

Content

The lecture will give an overview about the different forms of parallelism of an algorithm and the corresponding mapping on hardware architectures. It will introduce the different layouts of the hardware architectures and the different programming models.

To allow for a common programming model for both graphic cards and multi-core processors, the introduction into OpenCL will be very detailed. The OpenCL programming model, the API and the OpenCL C language will be explained. For an optimized use of OpenCL it is mandatory to understand the underlying memory model in all its details. With tutorials during the lecture the, students will get the opportunity to implement image processing algorithms on different architectures and optimize them accordingly. A graphic card and a Xeon-Phi accelerator board will be provided.

5.146 Module: Natural Language Processing and Software Engineering [M-INFO-100735]

Responsible:Prof. Dr.-Ing. Anne KoziolekOrganisation:KIT Department of Informatics

Part of: Informatics

	Credit: 3	s Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1
Mandatory							
T-INFO-10	1272	Natural Language Proc	essing and Software E	ingineering		3 C R	Koziolek

5.147 Module: Network Economics [M-WIWI-101406]

Responsible:	Prof. Dr. Kay Mitusch
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Economics)

(Credits	Grading scale	Recurrence	Duration	Language	Level	Version
	9	Grade to a tenth	Each term	1 term	German/English	4	2

Election block: Com	pulsory Elective Courses (9 credits)		
T-WIWI-100005	Competition in Networks	4,5 CR	Mitusch
T-WIWI-100007	Transport Economics	4,5 CR	Mitusch, Szimba
T-WIWI-102609	Advanced Topics in Economic Theory	4,5 CR	Mitusch
T-WIWI-102712	Regulation Theory and Practice	4,5 CR	Mitusch
T-WIWI-102713	Telecommunication and Internet Economics	4,5 CR	Mitusch

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

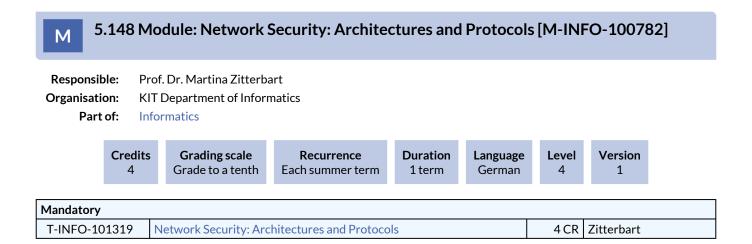
The students

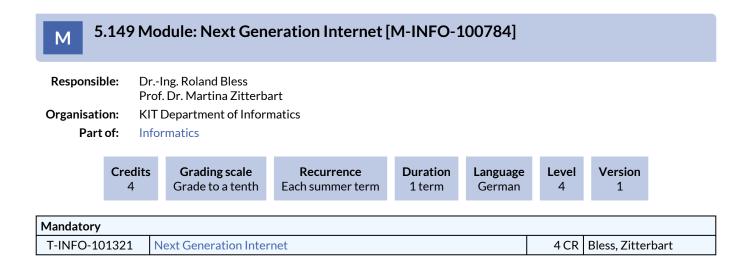
- have acquired the basic knowledge for a future job in a network company or in a regulatory agency, ministry etc.
- recognize the specific characterizations of network sectors, know fundamental methods for an economic analysis of network sectors and recognize the interfaces for an interdisciplinary cooperation of economists, engineers and lawyers
- understand the interactions between infrastructures, control systems, and the users of networks, especially concerning their implications on investments, price setting and competitive behavior, and they can model or simulate exemplary applications
- can assess the necessity of regulation of natural monopolies and identify regulatory measures that are important for networks.

Prerequisites

None

Content


The module is concerned with network or infrastructure industries in the economy, e.g. telecommunication, traffic and energy sectors. These sectors are characterized by close interdependencies of operators and users of infrastructure as well as on states. States intervene in various forms, by the public and regulation authorities, due to the importance of network industries and due to limited abilities of markets to work properly in these industries. The students are supposed to develop a broad knowledge of these sectors and of the political options available.


Recommendation

Basics of microeconomics obtained within the undergraduate programme (B.Sc) of economics are required.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

5.150 Module: Operations Research in Supply Chain Management [M-WIWI-102832] Μ

Responsible: Prof. Dr. Stefan Nickel Organisation: KIT Department of Economics and Management Part of:

Economics and Management (Operations Research)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	2 terms	German	4	7

Election block: Com	pulsory Elective Courses (at most 2 items)		
T-WIWI-102723	Graph Theory and Advanced Location Models	4,5 CR	Nickel
T-WIWI-106200	Modeling and OR-Software: Advanced Topics	4,5 CR	Nickel
T-WIWI-102715	Operations Research in Supply Chain Management	4,5 CR	Nickel
Election block: Supp	lementary Courses (at most 2 items)		
T-WIWI-106546	Introduction to Stochastic Optimization	4,5 CR	Rebennack
T-WIWI-102718	Discrete-Event Simulation in Production and Logistics	4,5 CR	Nickel
T-WIWI-102719	Mixed Integer Programming I	4,5 CR	Stein
T-WIWI-102720	Mixed Integer Programming II	4,5 CR	Stein
T-WIWI-110162	Optimization Models and Applications	4,5 CR	Sudermann-Merx
T-WIWI-106549	Large-scale Optimization	4,5 CR	Rebennack

Competence Certificate

The assessment is carried out as partial exams (according to 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- is familiar with basic concepts and terms of Supply Chain Management,
- knows the different areas of SCM and their respective optimization problems,
- is acquainted with classical location problem models (in planes, in networks and discrete) as well as fundamental methods for distribution and transport planning, inventory planning and management,
- is able to model practical problems mathematically and estimate their complexity as well as choose and adapt appropriate solution methods.

Prerequisites

At least one of the courses "Operations Research in Supply Chain Management", "Graph Theory and Advanced Location Models", "Modeling and OR-Software: Advanced Topics" and "Special Topics of Stochastic Optimization (elective)" has to be taken.

Content

Supply Chain Management is concerned with the planning and optimization of the entire, inter-company procurement, production and distribution process for several products taking place between different business partners (suppliers, logistics service providers, dealers). The main goal is to minimize the overall costs while taking into account several constraints including the satisfaction of customer demands.

This module considers several areas of SCM. On the one hand, the determination of optimal locations within a supply chain is addressed. Strategic decisions concerning the location of facilities as production plants, distribution centers or warehouses are of high importance for the rentability of Supply Chains. Thoroughly carried out, location planning tasks allow an efficient flow of materials and lead to lower costs and increased customer service. On the other hand, the planning of material transport in the context of supply chain management represents another focus of this module. By linking transport connections and different facilities, the material source (production plant) is connected with the material sink (customer). For given material flows or shipments, it is considered how to choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints. Furthermore, this module offers the possibility to learn about different aspects of the tactical and operational planning level in Suppy Chain Mangement, including methods of scheduling as well as different approaches in procurement and distribution logistics. Finally, issues of warehousing and inventory management will be discussed.

Recommendation

Basic knowledge as conveyed in the module Introduction to Operations Research is assumed.

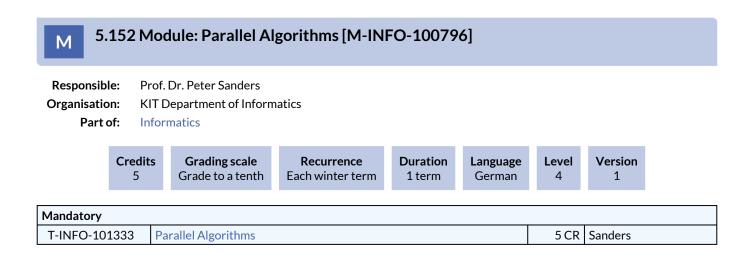
Annotation

Some lectures and courses are offered irregularly.

The planned lectures and courses for the next three years are announced online.

Workload

Total effort for 9 credits: ca. 270 hours


- Presence time: 84 hours
- Preparation/Wrap-up: 112 hours
- Examination and examination preparation: 74 hours

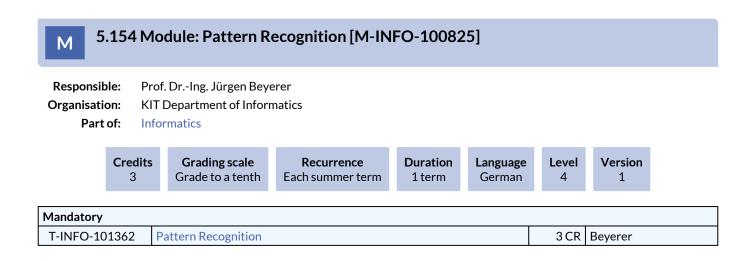
5.151 Module: Optimization and Synthesis of Embedded Systems (ES1) [M-INFO-100830]

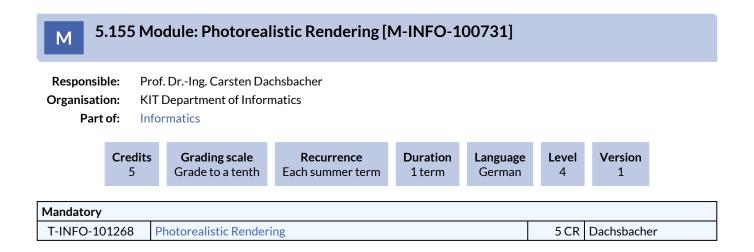
Responsible:Prof. Dr.-Ing. Jörg HenkelOrganisation:KIT Department of Informatics

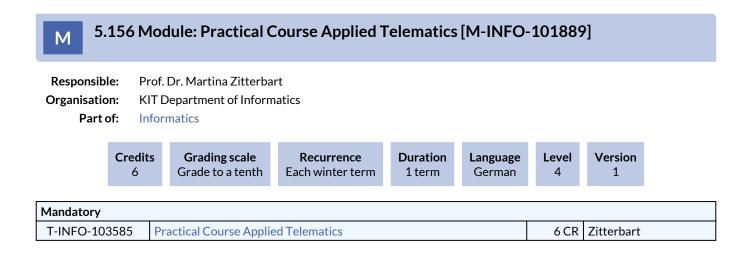
Part of: Informatics

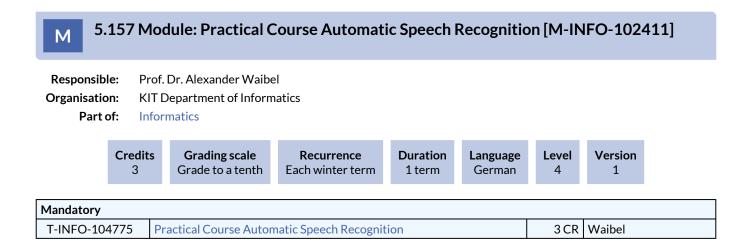
	Credit: 3	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1	
Mandatory								
T-INFO-10	1367	Optimization and Syntl	nesis of Embedded Sys	tems (ES1)		3 CR	Henkel	

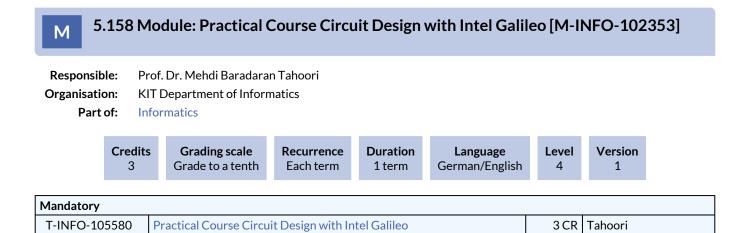
5.153 Module: Parallel Computer Systems and Parallel Programming [M-INFO-100808]


Responsible: Prof. Dr. Achim Streit


Organisation: KI Part of: Inf


KIT Department of Informatics


of:	Informatics	


	Credits 4	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 1
Mandatory							
T-INFO-10)1345	Parallel Computer Sys	tems and Parallel Prog	ramming		4 CR	Streit

5.159 Module: Practical Course Computer Vision for Human-Computer Interaction [M-INFO-102966]

Responsible:Prof. Dr.-Ing. Rainer StiefelhagenOrganisation:KIT Department of InformaticsPart of:Informatics

	Credits 6	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 3
Mandatory							
T-INFO-10	5943	Practical Course Comp	outer Vision for Human	-Computer In	teraction	6 CR	Stiefelhagen

5.160 Module: Practical Course Data Management and Data Analysis [M-INFO-103050]

Responsible:Prof. Dr. Achim StreitOrganisation:KIT Department of Informatics

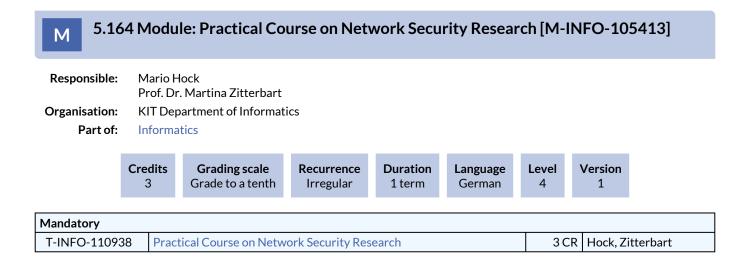

Part of: Informatics

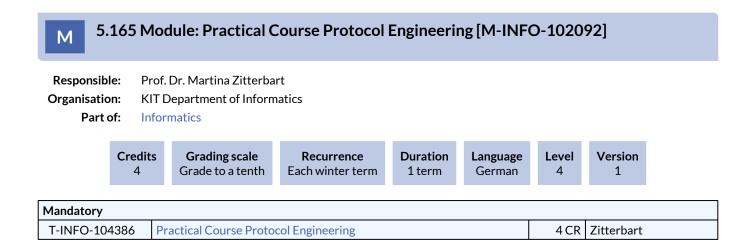
i ui t	o n m	Tormatics					
	Credits 4	Grading scale Grade to a tenth	Recurrence Each term	Duration 1 term	Language German/English	Level 4	Version 1
Mandatory							
T-INFO-10	6066	Practical Course Data	Management an	d Data Analys	is	4 CR	Streit

5.161 Module: Practical Course Decentralized Systems and Network Services [M-INFO-103047]

Responsible:Prof. Dr. Hannes HartensteinOrganisation:KIT Department of InformaticsPart of:Informatics

	Cred 4	lits	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Language German	Level 4	Version 1
Mandatory								
T-INFO-10606	63	Pract	ical Course Decentra	alized Systems a	nd Network So	ervices	4 C	R Hartenst

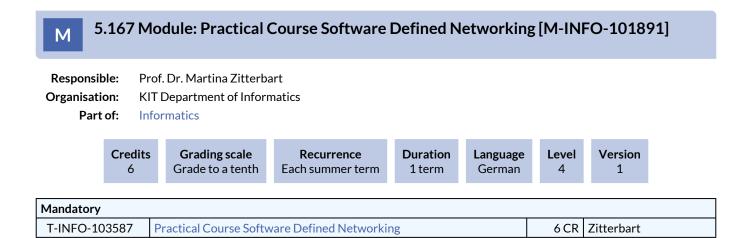

5.163 Module: Practical Course Model-Driven Software Development [M-INFO-101579]

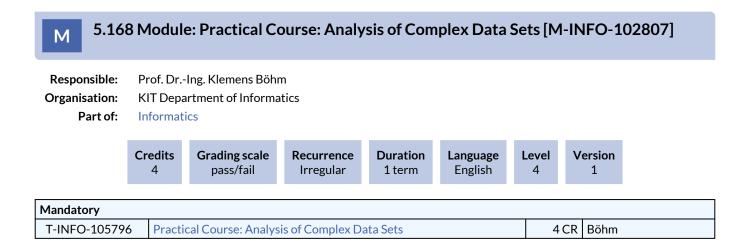

Responsible:Prof. Dr. Ralf ReussnerOrganisation:KIT Department of Informatics

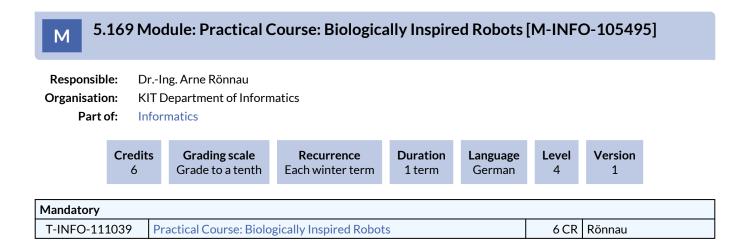
Part of: Infor

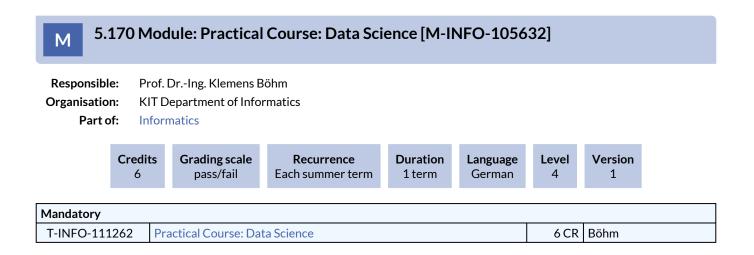
KIT Departine	
Informatics	

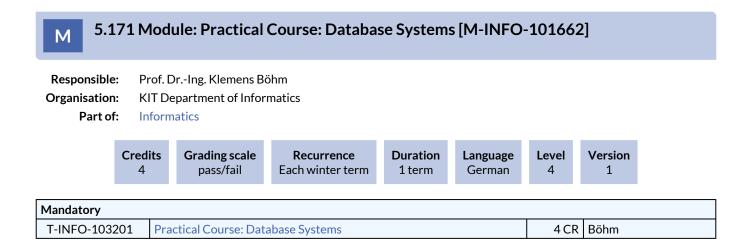
	Credits 6	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 1	
Mandatory								
T-INFO-103029 Practical Course Model-Driven Software Development							Reussner	

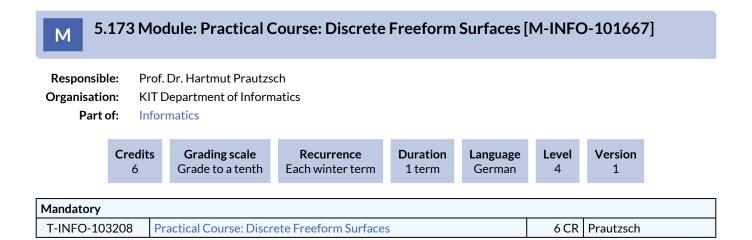





5.166 Module: Practical Course Research Project: Hands-on Anthropomatics [M-INFO-102568]


Responsible:Prof. Dr.-Ing. Uwe HanebeckOrganisation:KIT Department of InformaticsPart of:Informatics

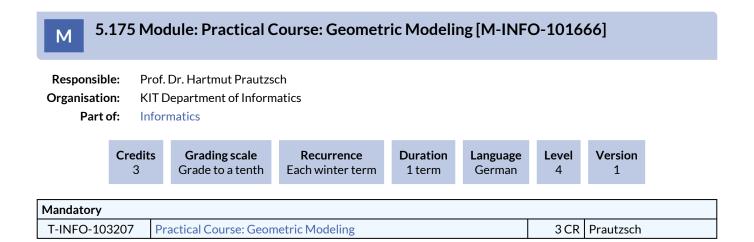

Part of:		orma						
	Cred 8	its	Grading scale Grade to a tenth	Recurrence Each term	Duration 1 term	Language German	Level 4	Version 1
Mandatory								
T-INFO-1052	78	Pract	ical Course Research	Project: Hands	on Anthropo	matics	80	R Hanebeo



5.172 Module: Practical Course: Digital Design & Test Automation Flow [M-INFO-102570]

Responsible:Prof. Dr. Mehdi Baradaran TahooriOrganisation:KIT Department of InformaticsPart of:Informatics

Credit 3	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language English	Level 4	Version 1		
Mandatory								
T-INFO-105565	3 C R	Tahoori						



5.174 Module: Practical Course: General-Purpose Computation on Graphics Μ Processing Units [M-INFO-100724]

Responsible: Prof. Dr.-Ing. Carsten Dachsbacher **Organisation: KIT** Department of Informatics Part of: Informatics

	Credits 3	Grading scale Grade to a tenth	Recurrence Each term	Duration 1 term	Language German	Level 4	Version 2
٠v							

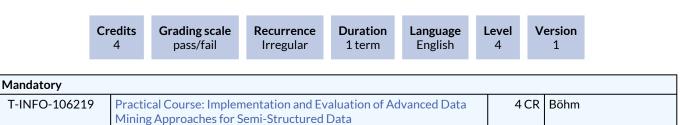
Mandatory			
T-INFO-109914	Practical Course: General-Purpose Computation on Graphics Processing Units	3 C R	

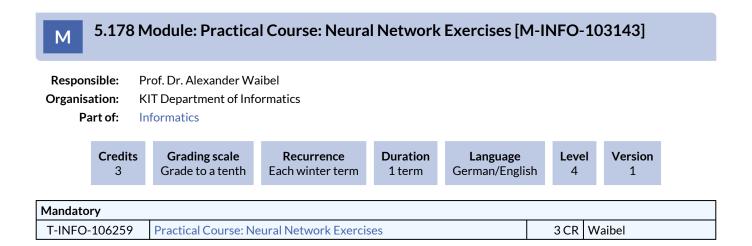
5.176 Module: Practical Course: Hot Research Topics in Computer Graphics [M-INFO-104699]

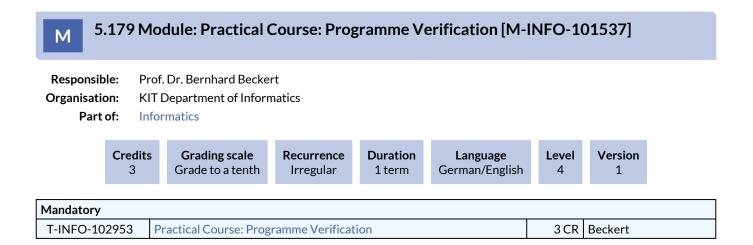
Responsible:	Prof. DrIng. Carsten Dachsbacher
Organisation:	KIT Department of Informatics
Part of:	Informatics

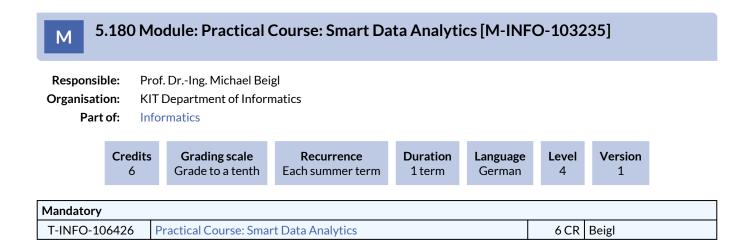
Cree	,	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Language German/English	Level 4	Version 1
Mandatory							
T-INFO-109577 Practical Course: Hot Research Topics in Computer Graphics						6 CR	Dachsbacher

Competence Goal


Students study scientific publications on currently hot topics of computer graphics, implement and evaluate state of the art methods, and compare them to newly developed approaches. The results of the practical course will be documented in the form of a scientific paper.


Content

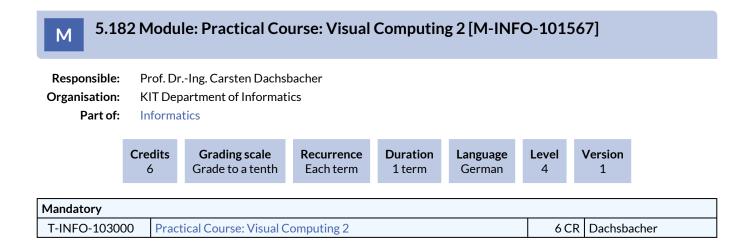

Students in this practical course are introduced to theoretical and practical aspects of current research topics at the chair of computer graphics.


5.177 Module: Practical Course: Implementation and Evaluation of Advanced Data Mining Approaches for Semi-Structured Data [M-INFO-103128]

Responsible:Prof. Dr.-Ing. Klemens BöhmOrganisation:KIT Department of InformaticsPart of:Informatics

5.181 Module: Practical Course: Virtual Neurorobotics in the Human Brain Project [M-Μ INFO-103227]

Responsible: Prof. Dr.-Ing. Rüdiger Dillmann **Organisation: KIT Department of Informatics** Part of: Informatics

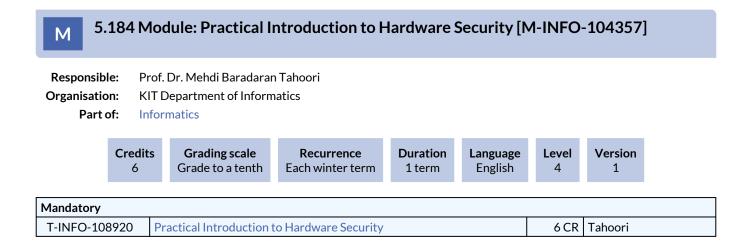

	Credits 3	;	Grading scale Grade to a tenth	Recurrence Irregular	Duration 1 term	Language German/English	Level 4	Version 1
Mandatory								
T-INFO-106417 Practical Course: Virtual Neurorobotics in the Human Brain Project								Dillmann

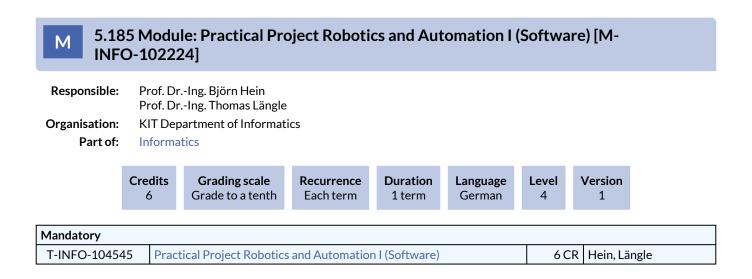
Competence Goal

- Students understand the basic of neuroscience, neuro-robotics and neuro-informatics
- Students are able to model functional networks of artificial spiking neurons for robot control.
- They are familiar with neural and physical simulation environments (especially the simulator developed in the Human Brain • Project) and can design and conduct scientific experiments within.

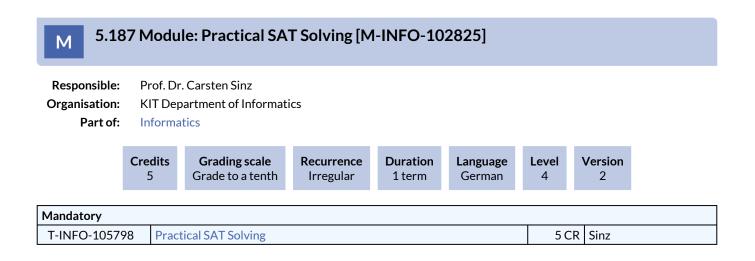
Content

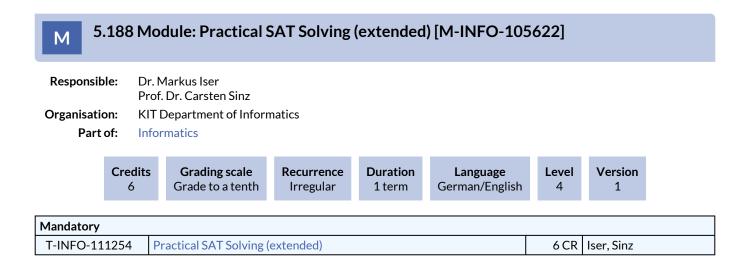
In this practical course, students have the opportunity to discover the field of neurorobotics within the context of the "Human Brain Project". The course will cover the concepts of virtual neurorobotics ranging from modelling networks of artificial spiking neurons to design of adequate experiments for training and evaluation in a simulation environments.

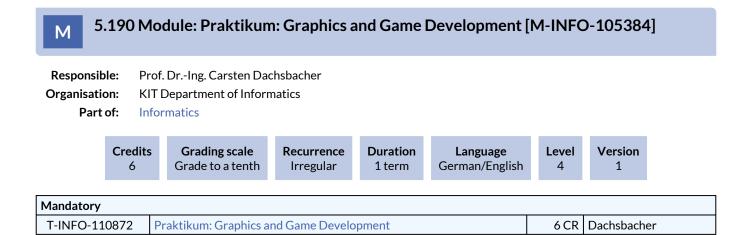

5.183 Module: Practical Course: Web Applications and Service-Oriented Architectures (II) [M-INFO-101635]

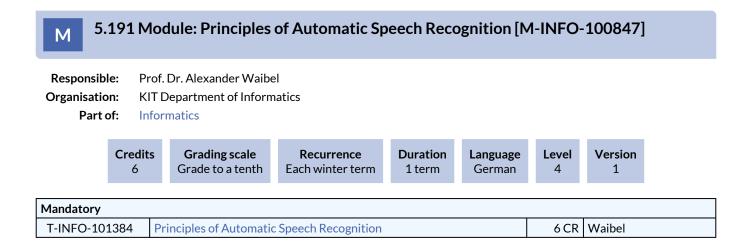

Responsible: Prof. Dr. Sebastian Abeck

Organisation: KIT Department of Informatics Part of: Informatics


Architectures (II)


	Credits 5	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 2		
Mandatory									
T-INFO-10	T-INFO-103121 Practical Course: Web Applications and Service-Oriented								


5.186 Module: Practical Project Robotics and Automation II (Hardware) [M- INFO-102230]										
Responsible:Prof. DrIng. Björn Hein Prof. DrIng. Thomas LängleOrganisation:KIT Department of Informatics InformaticsPart of:Informatics										
		Credits 6Grading scale Grade to a tenthRecurrence Each termDuration 1 termLanguage GermanLevel 4Version 1								
Mandatory										
T-INFO-10455	52	Pract	ical Project Robotics	and Automation	n II (Hardware	e)	60	R Hein, Lär	ıgle	



5.189 Module: Practical: Course Engineering Approaches to Software Development [M-INFO-104254]

Responsible: Prof. Dr. Ralf Reussner **Organisation: KIT** Department of Informatics Part of: Informatics Credits Grading scale Recurrence Duration Level Version Language 6 Grade to a tenth Each term 1 term German 4 1 Mandatory T-INFO-108791 Practical Course Engineering Approaches to Software Development 6 CR Reussner

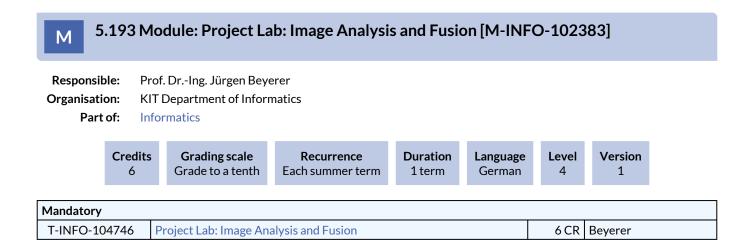
5.192 Module: Private Business Law [M-INFO-101216]

Responsible:	Prof. Dr. Thomas Dreier
Organisation:	KIT Department of Informatics
Part of:	Law

Election block: Private Business Law (at least 1 item as well as at least 9 credits)							
T-INFO-101329	Employment Law I	3 C R	Hoff				
T-INFO-101330	Employment Law II	3 C R	Hoff				
T-INFO-101315	Tax Law I	3 C R	Dietrich				
T-INFO-101314	Tax Law II	3 C R	Dietrich				
T-INFO-101316	Law of Contracts	3 CR	Hoff				

Competence Goal

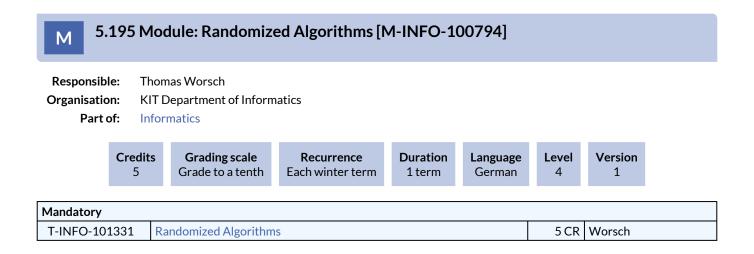
The student

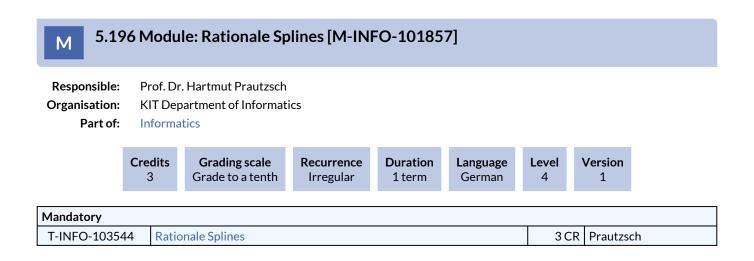

- has gained in-depth knowledge of German company law, commercial law and civil law;
- is able to analyze, evaluate and solve complex legal and economic relations and problems;
- is well grounded in individual labour law, collective labour law and commercial constitutional law, evaluates and critically assesses clauses in labour contracts;
- recognizes the significance of the parties to collective labour agreements within the economic system and has
 differentiated knowledge of labour disputes law and the law governing the supply of temporary workers and of social law;
- possesses detailed knowledge of national earnings and corporate tax law and is able to deal with provisions of tax law in a scientific manner and assesses the effect of these provisions on corporate decision-making.

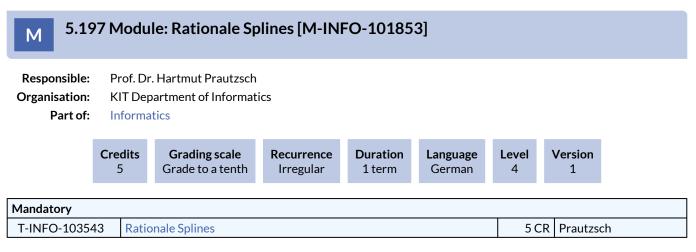

Prerequisites

None

Content

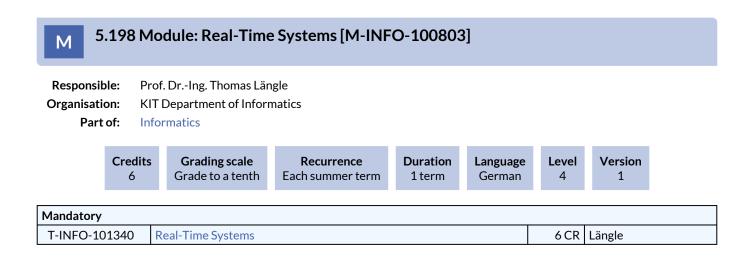

The module provides the student with knowledge in special matters in business law, like employment law, tax law and business law, which are essential for managerial decisions.

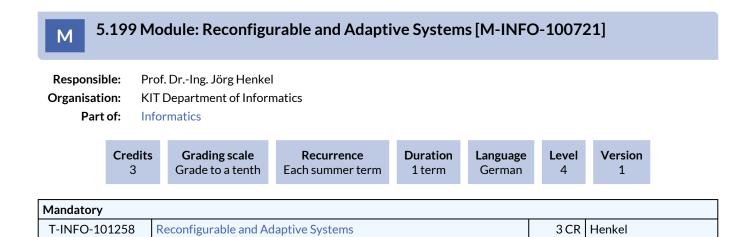




Competence Certificate

see course description.





Prerequisites

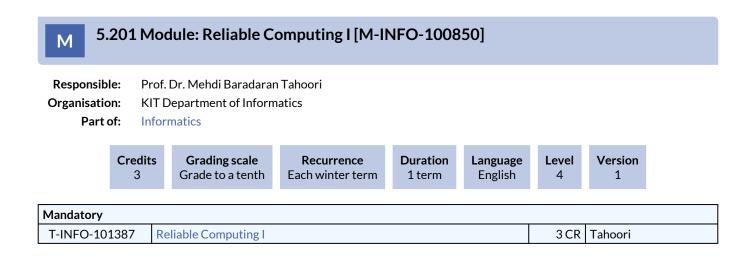
one

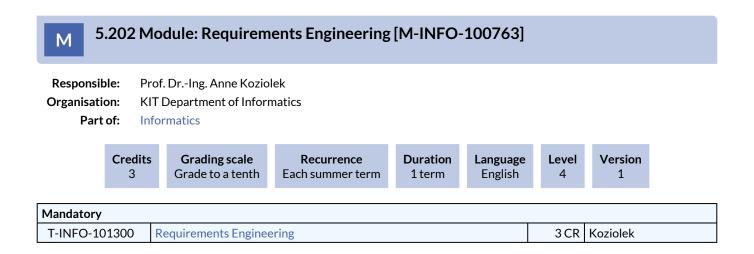
5.200 Module: Reinforcement Learning and Neural Networks in Robotics [M-Μ INFO-104894] Prof. Dr.-Ing. Torsten Kröger **Responsible:** Dr.-Ing. Pascal Meißner **Organisation: KIT Department of Informatics** Part of: Informatics Credits Grading scale Duration Version Recurrence Language Level Grade to a tenth 3 Each summer term 1 term English 4 1 Mandatory T-INFO-109928 **Reinforcement Learning and Neural Networks in Robotics** 3 CR Meißner

Competence Goal

You will get familiar with state-of-the-art data-driven representations and algorithms for controlling stationary and mobile robots. The first part covers basic concepts of Supervised and Imitation Learning of Deep Neural Networks by means of optimization techniques. In doing so, we dedicate an entire lecture to the practical application of networks in robotics. The second part expands on various approaches to Reinforcement Learning. Accompanying the lecture, we discuss case-studies from Robotics research.

Course objectives:


- Successful participants will have a basic understanding of Machine Learning and of the mathematical optimization techniques (gradient-based methods), used in this context.


- Successful participants will understand representations (Feed-Forward and Recurrent Networks) and algorithms (Backpropagation) in Deep Supervised and Imitation Learning. They will be able to deploy them on problems which are related to learning robot behaviors.

- Successful participants will gain a comprehensive insight in the terminology of Reinforcement Learning, its stochastic foundations (MDP), model-free learning methods (MC, TD, SARSA, Q-), policy-gradient approaches (Actor-Critic, TRPO, PPO) and model-based approaches (global and local models). On that basis, successful participants can develop solutions to learn robot motor skills.

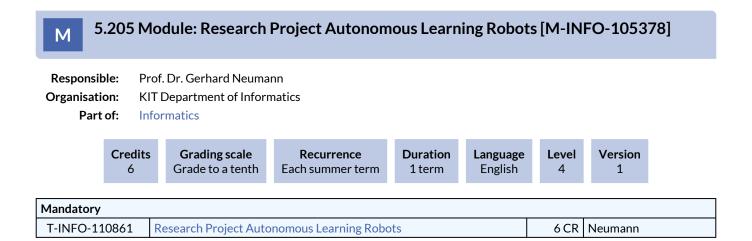
Content

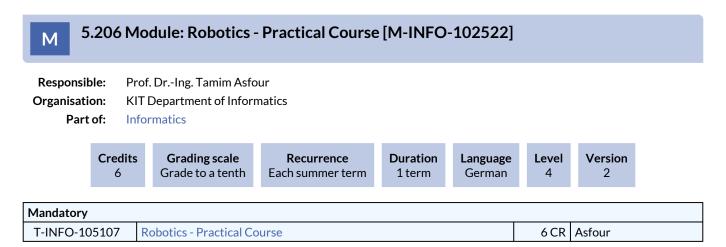
- Introduction and Foundations of Machine Learning
- Optimization for Machine Learning
- (Deep) Supervised Learning Introduction
- Guest Lecture Innovative Practical Applications
- (Deep) Imitation Learning Introduction
- (Deep) Reinforcement Learning Introduction
- Markov Decision Processes and Dynamic Programming
- Monte-Carlo Learning and Time Difference
- Basic Policy Gradients
- Advanced Policy Gradients
- Model-based Reinforcement Learning

T-INFO-110220

4 CR Beckert

5.203 Module: Research Project (Project, 1st Semester) [M-INFO-105037]									
Responsible: Prof. Dr. Bernhard Beckert Prof. DrIng. Michael Beigl Prof. Dr. Ralf Reussner									
Organisation:	KI	T Dep	artment of Informati	cs					
Part of:	In	forma	natics						
	Cree 1		Grading scale Grade to a tenth	Recurrence Each term	Duration 2 terms	Language German	Level 4	Version 2	
Mandatory							-		
T-INFO-1102	18	Rese	arch Project (Project	, 1st Semester) -	Oral Exam		3 CR	Beckert	
T-INFO-1102	19	Rese	arch Project (Project	, 1st Semester) -	Presentation		3 C R	Beckert	


Research Project (Project, 1st Semester) - Project Proposal

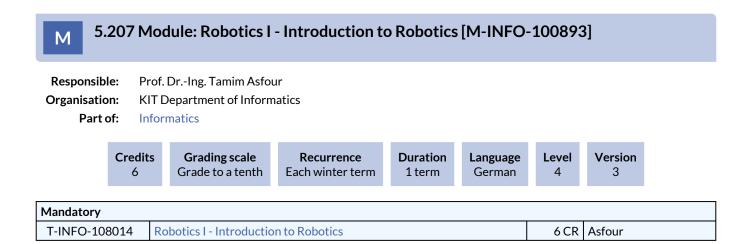

T-INFO-110223

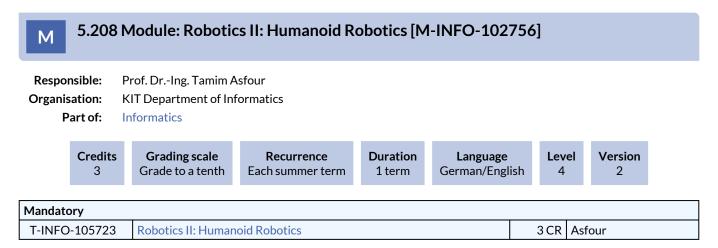
4 CR Beckert

5.204 Module: Research Project (Project, 2nd Semester) [M-INFO-105038]									
Responsible: Prof. Dr. Bernhard Beckert Prof. DrIng. Michael Beigl Prof. Dr. Ralf Reussner									
Organisation:	KI	T Dep	artment of Informati	ics					
Part of:	In	format	tics						
	-			-					
	Cree 10		Grading scale Grade to a tenth	Recurrence Each term	Duration 2 terms	Language German	Level 4	Version 1	
Mandatory	_	_			_				
Mandatory T-INFO-11022	21	Resea	arch Project (Project	, 2nd Semester)	- Oral Exam		3 CF	R Beckert	

Research Project (Project, 2nd Semester) - Scientific Report

Competence Goal


The student knows concrete solutions for different problems in robotics. He/she uses methods of inverse kinematics, grasp and motion planning, and visual perception. The student can implement solutions in the programming language C++ with the help of suitable software frameworks.


Content

The practical course is offered as an accompanying course to the lectures Robotics I-III. Every week, a small team of students will work on solving a given robotics problem. The list of topics includes robot modeling and simulation, inverse kinematics, robot programming via statecharts, collision-free motion planning, grasp planning, and robot vision.

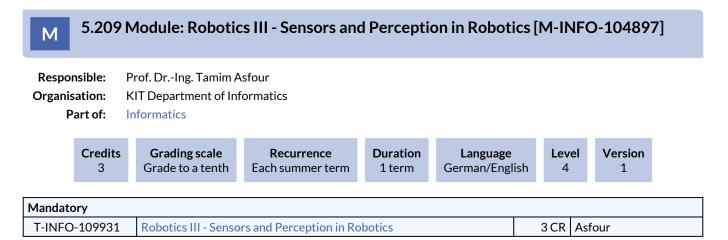
Recommendation

Attending the lectures Robotics I – Introduction to Robotics, Robotics II: Humanoid Robotics, Robotics III - Sensors and Perception in Robotics and Mechano-Informatics and Robotics is recommended.

Competence Goal

The students have an overview of current research topics in autonomous learning robot systems using the example of humanoid robotics. They are able to classify and evaluate current developments in the field of cognitive humanoid robotics.

The students know the essential problems of humanoid robotics and are able to develop solutions on the basis of existing research.


Prerequisites

None

Content

The lecture presents current work in the field of humanoid robotics that deals with the implementation of complex sensorimotor and cognitive abilities. In the individual topics different methods and algorithms, their advantages and disadvantages, as well as the current state of research are discussed.

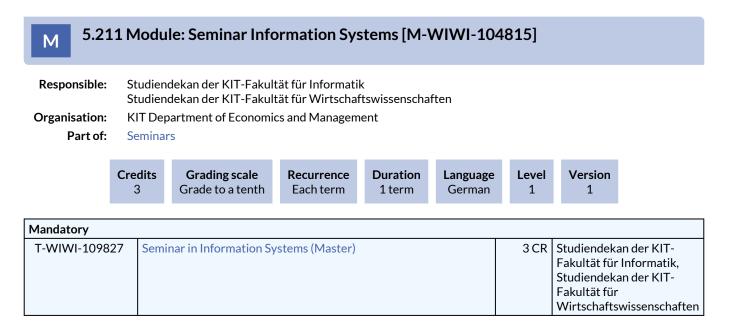
The topics addressed are: Applications and real world examples of humanoid robots; biomechanical models of the human body, biologically inspired and data-driven methods of grasping, active perception, imitation learning and programming by demonstration; semantic representations of sensorimotor experience as well as cognitive software architectures of humanoid robots.

Competence Goal

Students can name the main sensor principles used in robotics.

Students can explain the data flow from physical measurement through digitization to the use of the recorded data for feature extraction, state estimation and semantic scene understanding.

Students are able to propose and justify suitable sensor concepts for common tasks in robotics.


Content

The lecture supplements the lecture Robotics I with a broad overview of sensors used in robotics. The lecture focuses on visual perception, object recognition, simultaneous localization and mapping (SLAM) and semantic scene interpretation. The lecture is divided into two parts:

In the first part a comprehensive overview of current sensor technologies is given. A basic distinction is made between sensors for the perception of the environment (exteroceptive) and sensors for the perception of the internal state (proprioceptive).

The second part of the lecture concentrates on the use of exteroceptive sensors in robotics. The topics covered include tactile exploration and visual data processing, including advanced topics such as feature extraction, object localization, simultaneous localization and mapping (SLAM) and semantic scene interpretation.

M 5.210 Module: Security [M-INFO-100834]									
Responsible:Prof. Dr. Jörn Müller-QuadeOrganisation:KIT Department of InformaticsPart of:Informatics									
	Credits 6	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 1		
Mandatory									
T-INFO-10	01371	Security				6 CR	Hofheinz, M Quade	lüller-	

Competence Certificate

The assessment is done by a seminar with at least 3 CP.

The assessment of the seminar (following §4(2), 3 ER) is described at the course description.

Competence Goal

- Students are able to independently deal with a defined problem in a specialized field based on scientific criteria.
- They are able to research, analyze the information, abstract and derive basic principles and regularities from unstructured information.
- They can solve the problems in a structured manner using their interdisciplinary know-how.
- They know how to validate the obtained results.
- Finally, they are able to logically and systematically present the results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Prerequisites

None.

Content

The module consists of a seminar, that is related to the research field of economic sciences. A complete list of available seminars is published in the internet.

Annotation

The mentioned seminars in this module handbook are place holders. For each semester, a complete list of seminars are published in the Vorlesungsverzeichnis or at the web pages of the participating institutes. Often, the seminar topics for a given semester are published at the end of the preceding semester. Some seminars require an early sign-in deadline at the end of the of the preceding semester.

Workload

The total workload for this module is approximately 90 hours.

5.212 Module: Seminar Module Economic Sciences [M-WIWI-102736]

Responsible:Studiendekan der KIT-Fakultät für WirtschaftswissenschaftenOrganisation:KIT Department of Economics and ManagementPart of:Seminars

Election block: Compulsory Elective Courses (1 item)

Election Diock. Com	Election block: Comparison y Elective Courses (1 item)							
T-WIWI-103474	Seminar in Business Administration A (Master)	3 CR	Professorenschaft des Fachbereichs Betriebswirtschaftslehre					
T-WIWI-103478	Seminar in Economics A (Master)	3 CR	Professorenschaft des Fachbereichs Volkswirtschaftslehre					
T-WIWI-103481	Seminar in Operations Research A (Master)	3 CR	Nickel, Rebennack, Stein					
T-WIWI-103483	Seminar in Statistics A (Master)	3 CR	Grothe, Schienle					

Competence Certificate

The assessment is done by a seminar with at least 3 CP.

The assessment of the seminar (following §4(2), 3 ER) is described at the course description.

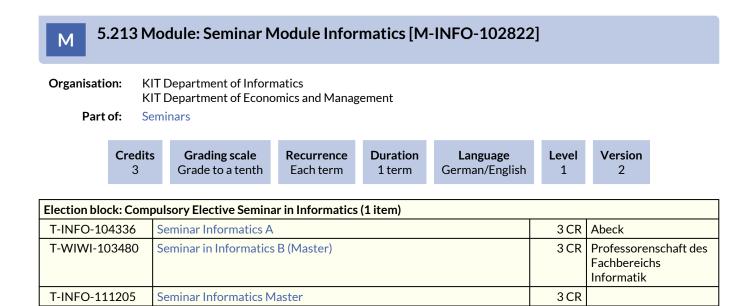
Competence Goal

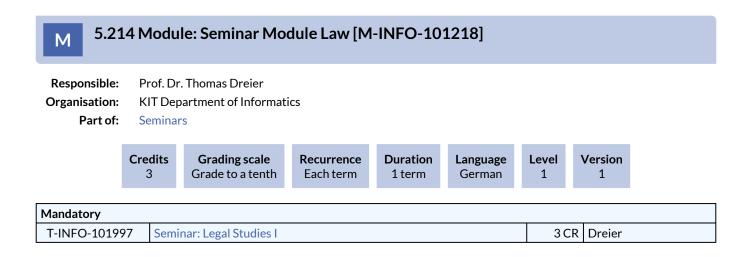
- Students are able to independently deal with a defined problem in a specialized field based on scientific criteria.
- They are able to research, analyze the information, abstract and derive basic principles and regularities from unstructured information.
- They can solve the problems in a structured manner using their interdisciplinary know-how.
- They know how to validate the obtained results.
- Finally, they are able to logically and systematically present the results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Prerequisites

None.

Content


The module consists of a seminar, that is related to the research field of economic sciences. A complete list of available seminars is published in the internet.


Annotation

The mentioned seminars in this module handbook are place holders. For each semester, a complete list of seminars are published in the Vorlesungsverzeichnis or at the web pages of the participating institutes. Often, the seminar topics for a given semester are published at the end of the preceding semester. Some seminars require an early sign-in deadline at the end of the of the preceding semester.

Workload

The total workload for this module is approximately 90 hours.

5.215 Module: Service Analytics [M-WIWI-101506]

Responsible:	Prof. Dr. Gerhard Satzger Prof. Dr. Christof Weinhardt
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Business Administration)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	2 terms	German	4	7

Election block: Compulsory Elective Courses (9 credits)			
T-WIWI-108715	Artificial Intelligence in Service Systems	4,5 CR	Satzger
T-WIWI-111219	Artificial Intelligence in Service Systems - Applications in Computer Vision	4,5 CR	Satzger
T-WIWI-105777	Business Intelligence Systems	4,5 CR	Mädche, Nadj, Toreini
T-WIWI-102899	Modeling and Analyzing Consumer Behavior with R	4,5 CR	Dorner, Weinhardt
T-WIWI-109940	Special Topics in Information Systems	4,5 CR	Weinhardt

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- knows the theoretical bases and the key components of Business Intelligence systems,
- acquires the basic skills to make use of business intelligence and analytics software in the service context
- are introduced into various application scenarios of analytics in the service context
- are able to distinguish different analytics methods and apply them in context
- learn how to apply analytics software in the service context
- are trained for the structured compilation and solution of practice relevant problems with the help of commercial business intelligence software packages as well as analytics methods and tools

Prerequisites

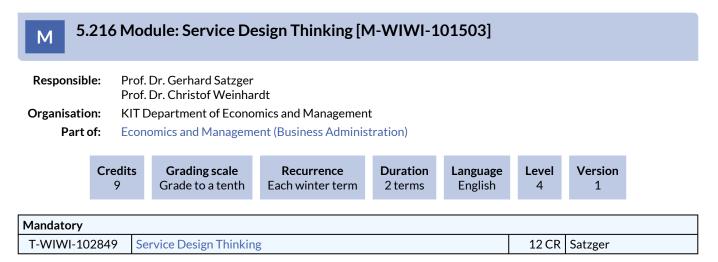
None

Content

The importance of services in modern economies is most evident – nearly 70% of gross value added are achieved in the tertiary sector and a growing number of industrial enterprises add customer specific services to their material goods or transform their business models fundamentally. The growing availability of data "Big Data" and their intelligent processing by applying analytic methods and business intelligence systems plays a key role.

It is the goal of the module to give students a comprehensive overview on the subject Business Intelligence & Analytics focusing on service issues. Various scenarios illustrate how the methods and systems introduced help to improve existing services or create innovative data-based services.

Recommendation


The course Service Analytics A [2595501] should be taken.

Annotation

This module is part of the KSRI teaching profile "Digital Service Systems". Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Competence Certificate

The assessment is carried out as a general exam (according to Section 4(2), 3 of the examination regulation). The overall grade of the module is the grade of the examination (according to Section 4(2), 3 of the examination regulation).

Competence Goal

- Deep knowledge of the innovation method Design Thinking, as introduced and promoted by Stanford University
- Development of new, creative solutions through extensive observation of oneself and one's environment, in particular with regard to the relevant service users
- Know how to use prototyping and experimentation to visualize one's ideas, to test and iteratively develop them, and to converge on a solution
- Learn to apply the method to a real innovation projects issued by industry partners.

Prerequisites

None

Content

- Paper Bike: Learning about the basic method elements by building a paper bike that has to fulfill a given set of challenges. The bikes will be tested in a race during an international Kick-Off event with other universities of the SUGAR network (intern. Design Thinking network).
- Design Space Exploration: Exploring the problem space through customer and user observation as well as desk research.
- Critical Function Prototype: Identification of critical features from the customer's perspective that can contribute to the solution of the overarching problem. Building and testing prototypes that integrate these functionalities.
- Dark Horse Prototype: Inverting earlier assumptions and experiences, which leads to the inclusion of new features and solutions. Developing radically new ideas are in the focus of this phase.
- Funky Prototype: Integration of the individually tested and successful functions to several complete solution scenarios, which are further tested and developed.
- Functional Prototype: Selection of successful scenarios from the previous phase and building a higher resolution prototype. The final solution to the challenge is lade out in detail and tested with users.
- Final Prototype: Implementing the functional prototype and presenting it to the customer.

Recommendation

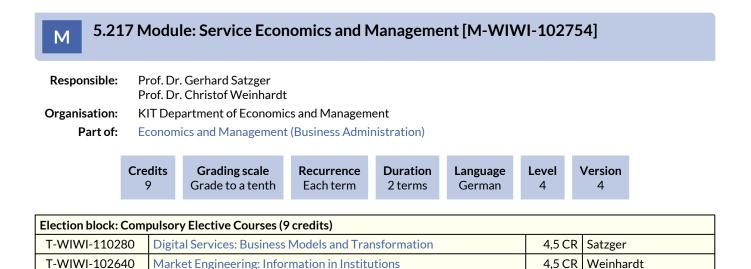
This course is held in English - proficiency in writing and communication is required.

Our past students recommend to take this course at the beginning of the masters program.

Annotation

Due to practical project work as a component of the program, access is limited.

The module (as well as the module component) spans two semesters. It starts in September every year and runs until end of June in the subsequent year. Entering the program is only possible at its beginning - after prior application in May/June.


For more information on the application process and the program itself are provided in the module component description and the program's website (http://sdt-karlsruhe.de).

Furthermore, the KSRI conducts an information event for applicants every year in May.

This module is part of the KSRI Teaching Program "Digital Service Systems". For more information see the KSRI Teaching website: www.ksri.kit.edu/teaching.

Workload

The total amount of work for this module is approx. 270 hours (9 credits). The workload for this course is comparably high as the course runs in cooperation with partner universities from around the world as well as partner companies. This causes overhead.

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

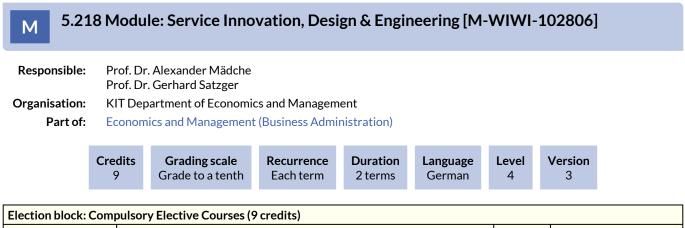
- understand the scientific basics of the management of digital services and corresponding systems
- gain a comprehensive insight in the importance and the most important features of information systems as an central component of the digitalization of business processes, products and services
- know the most relevant concepts and theories to shape the digital transformation process of service systems successfully
- understand the OR methods in the sector of service management and apply them adequately
- are able to use large amounts of available data systematically for the planning, operation and improvement of complex service offers and to design and control information systems
- are able to develop market-oriented coordination mechanisms and apply service systems.

Prerequisites

None

Content

This module provides the foundation for the management of digital services and corresponding systems. The courses in this module cover the major concepts for a successful management of service systems and their digital transformation. Current examples from the research and practice enhance the relevance of the discussed topics.


Recommendation

None

Annotation

This module is part of the KSRI teaching profile "Digital Service Systems". Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching.

Workload

Election block comparisory Elective courses () creatisy					
T-WIWI-110877	Engineering Interactive Systems	4,5 CR			
T-WIWI-102639	Business Models in the Internet: Planning and Implementation	4,5 CR	Weinhardt		
T-WIWI-110887	Practical Seminar: Service Innovation	4,5 CR	Satzger		
T-WIWI-108437	Practical Seminar: Information Systems and Service Design	4,5 CR	Mädche		
T-WIWI-102641	Service Innovation	4,5 CR	Satzger		

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- know about the challenges, concepts, methods and tools of service innovation management and are able to use them successfully.
- have a profound comprehension of the development and design of innovative services and are able to apply suitable methods and tools on concrete and specific issues.
- are able to embed the concepts of innovation management, development and design of services into organisations
- are aware of the strategic importance of services, are able to present value creation in the context of services systems and to strategically exploit the possibilities of their digital transformation
- elaborate concrete and problem-solving solutions for practical tasks in teams.

Prerequisites

Dependencies between courses:

The course Practical Seminar Service Innovation cannot be applied in combination with the course Practical Seminar Digital Service Design.

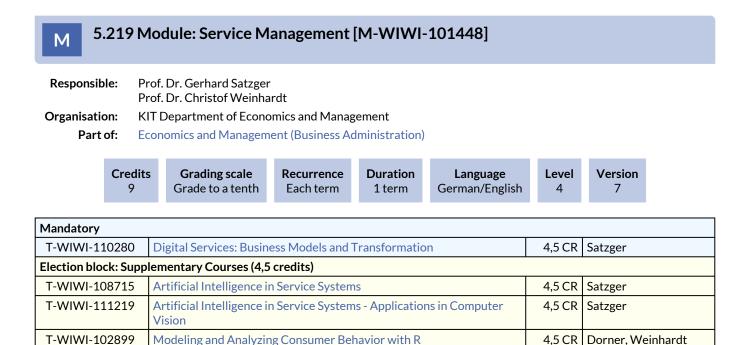
Content

This module is designed to constitute the basis for the development of successful ICT supported innovations thus including the methods and tools for innovation management, for the design and the development of digital services and the implementation of new business models. Current examples from science and practice enhance the relevance of the topics addressed.

Recommendation

Attending the course Practical Seminar Service Innovation [2595477] is recommended in combination with the course Service Innovation [2595468].

Attending the course Practical Seminar Digital Service Design [new] is recommended in combination with the course Digital Service Design [new].


Annotation

This module is part of the KSRI teaching profile "Digital Service Systems". Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching.

Workload

4,5 CR

Satzger

Competence Certificate

T-WIWI-102641

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The students

- understand the basics of developing and managing IT-based services,
- understand and apply OR methods in service management,

Service Innovation

- systematically use vast amounts of available data for planning, operation, personalization and improvement of complex service offerings, and
- understand and analyze innovation processes in corporations.

Prerequisites

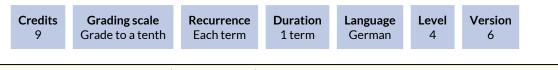
The course "Digital Services: Business Models and Transformation" is compulsory and must be examined.

Content

The module service management addresses the basics of developing and managing IT-based services. The lectures contained in this module teach the basics of developing and managing IT-based services and the application of OR methods in the field of service management. Moreover, students learn to systematically analyze vast amounts of data for planning, operation and improvement for complex service offerings. These tools enhance operational and strategic decision support and help to analyze and understand the overall innovation processes in corporations. Current examples from research and industry demonstrate the relevance of the topics discussed in this module.

Recommendation

None


Workload

5.220 Module: Service Operations [M-WIWI-102805]

Responsible:	Prof. Dr. Stefan Nickel
Organisation:	KIT Department of Eco

: KIT Department of Economics and Management

Part of: Economics and Management (Operations Research)

Election block: Compulsory Elective Courses (at most 2 items)							
T-WIWI-102718	Discrete-Event Simulation in Production and Logistics	4,5 CR	Nickel				
T-WIWI-102884	Operations Research in Health Care Management	4,5 CR	Nickel				
T-WIWI-102715	Operations Research in Supply Chain Management	4,5 CR	Nickel				
T-WIWI-102716	Practical Seminar: Health Care Management (with Case Studies)	4,5 CR	Nickel				
Election block: Supplementary Courses (at most 2 items)							
T-WIWI-102872	Challenges in Supply Chain Management	4,5 CR	Mohr				
T-WIWI-110971	Demand-Driven Supply Chain Planning	4,5 CR	Packowski				

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- knows the theoretical bases and the key components of Business Intelligence systems,
- acquires the basic skills to make use of business intelligence and analytics software in the service context
- are introduced into various application scenarios of analytics in the service context
- are able to distinguish different analytics methods and apply them in context
- · learn how to apply analytics software in the service context
- are trained for the structured compilation and solution of practice relevant problems with the help of commercial business intelligence software packages as well as analytics methods and tools

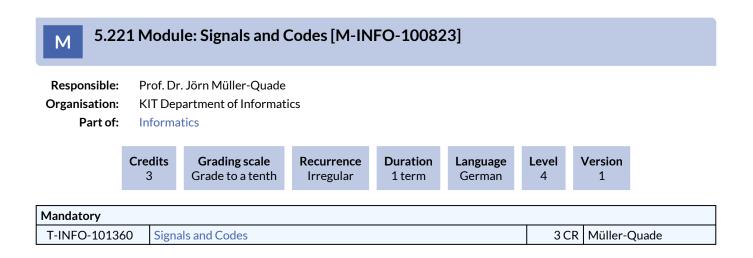
Prerequisites

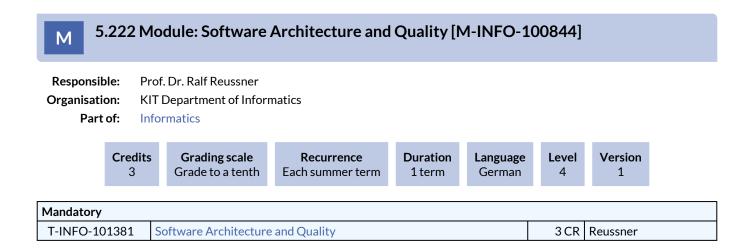
At least one of the fourcourses Operations Research in Supply Chain Management, Operations Research in Health Care Management, Practical seminar: Health Care Management orDiscrete-Event Simulation in Production and Logistics has to be assigned.

Content

The importance of services in modern economies is most evident – nearly 70% of gross value added are achieved in the tertiary sector and a growing number of industrial enterprises add customer specific services to their material goods or transform their business models fundamentally. The growing availability of data "Big Data" and their intelligent processing by applying analytic methods and business intelligence systems plays a key role.

It is the goal of the module to give students a comprehensive overview on the subject Business Intelligence & Analytics focusing on service issues. Various scenarios illustrate how the methods and systems introduced help to improve existing services or create innovative data-based services.

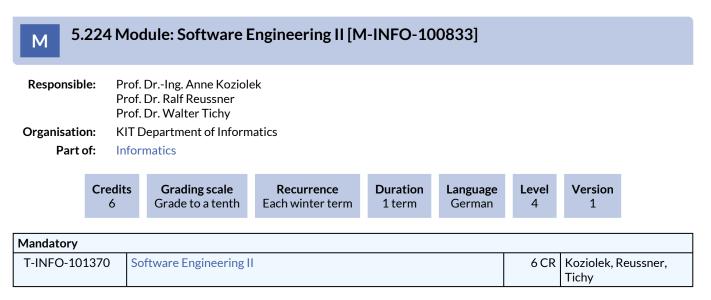

Recommendation


The course Practical Seminar Health Care should be combined with the course OR in Health Care Management.

Annotation

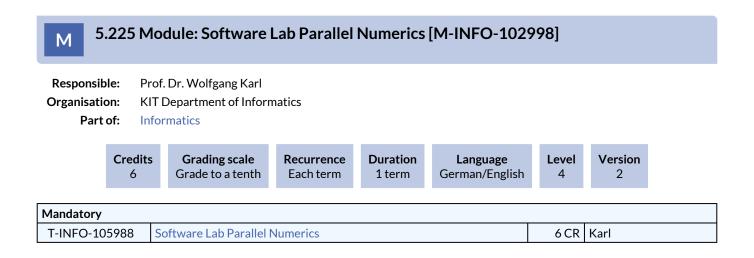
This module is part of the KSRI teaching profile "Digital Service Systems". Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching.

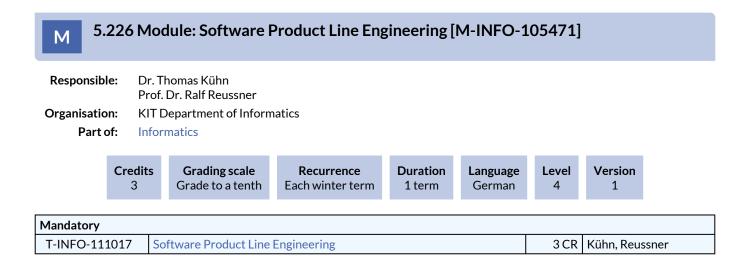
Workload

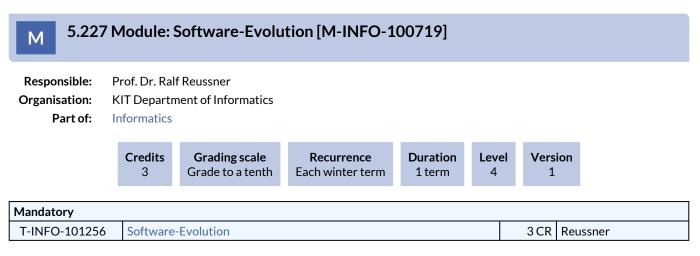


5.223 Module: Software Development for Modern, Parallel Platforms [M-INFO-100802]

Responsible:Prof. Dr. Walter TichyOrganisation:KIT Department of Informatics


Part of: Informatics


	Credits 3	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 1		
Mandatory									
T-INFO-101339 Software Development for Modern, Parallel Platforms						3 CR	Tichy		



Content

Requirements engineering, software development processes, software quality, software architectures, MDD, Enterprise Software Patterns software maintainability, software security, dependability, embedded software, middleware, domain-driven design

Prerequisites

None

4,5 CR

4,5 CR

Schienle

Heller

5.228 Module: Statistics and Econometrics II [M-WIWI-105414] Μ Prof. Dr. Melanie Schienle **Responsible:** Organisation: KIT Department of Economics and Management Part of: Economics and Management (Economics) **Economics and Management (Statistics)** Credits **Grading scale** Recurrence Duration Version Language Level 9 Grade to a tenth Each term 1 term German 4 1 Election block: Compulsory Elective Courses () T-WIWI-103063 Analysis of Multivariate Data 4,5 CR Grothe T-WIWI-103066 4,5 CR Nakhaeizadeh **Data Mining and Applications** T-WIWI-103064 **Financial Econometrics** 4,5 CR Schienle

Competence Certificate

T-WIWI-110939

T-WIWI-103065

The assessment is carried out as partial exams of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

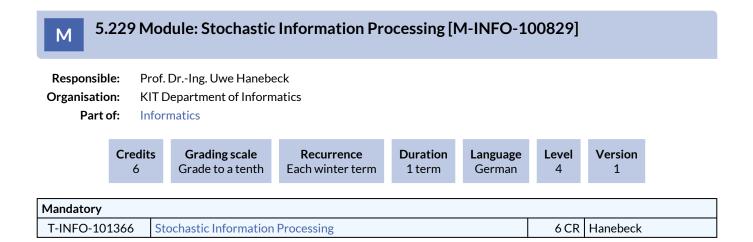
• shows an advanced understanding of Econometric techniques and statistical model building.

Statistical Modeling of Generalized Regression Models

- is able to develop advanced Econometric models for applied problems based on available data
- is able to apply techniques and models efficiently with statistical software, to interpret results and to judge on different approaches with appropriate statistical criteria.

Prerequisites

The following module must be passed: Statistics and Econometrics [M-WIWI-101599]


Content

The courses provide foundations of advanced Econometric and statistical techiques for regression, time series and multivariate analysis.

Workload

The total workload for this module is approximately 270 hours.

Financial Econometrics II

5.230 Module: Stochastic Optimization [M-WIWI-103289]

Responsible: Prof. Dr. Steffen Rebennack

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Operations Research)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	1 term	German/English	4	10

Election block: Compulsory Elective Courses (between 1 and 2 items)								
T-WIWI-106546	Introduction to Stochastic Optimization	4,5 CR	Rebennack					
T-WIWI-106548	Advanced Stochastic Optimization	4,5 CR	Rebennack					
T-WIWI-106549	Large-scale Optimization	4,5 CR	Rebennack					
Election block: Supp	Election block: Supplementary Courses (at most 1 item)							
T-WIWI-102723	Graph Theory and Advanced Location Models	4,5 CR	Nickel					
T-WIWI-102719	Mixed Integer Programming I	4,5 CR	Stein					
T-WIWI-102720	Mixed Integer Programming II	4,5 CR	Stein					
T-WIWI-111247	Mathematics for High Dimensional Statistics	4,5 CR	Grothe					
T-WIWI-103124	Multivariate Statistical Methods	4,5 CR	Grothe					
T-WIWI-102715	Operations Research in Supply Chain Management	4,5 CR	Nickel					
T-WIWI-106545	Optimization under Uncertainty	4,5 CR	Rebennack					
T-WIWI-110162	Optimization Models and Applications	4,5 CR	Sudermann-Merx					

Competence Certificate

The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- names and describes basic notions for advanced stochastic optimization methods, in particular, ways to algorithmically exploit the special model structures,
- knows the indispensable methods and models for quantitative analysis of stochastic optimization problems,
- models and classifies stochastic optimization problems and chooses the appropriate solution methods to solve also challenging stochastic optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions,
- identifies drawbacks of the solution methods and, if necessary, is able to makes suggestions to adapt them to practical problems.

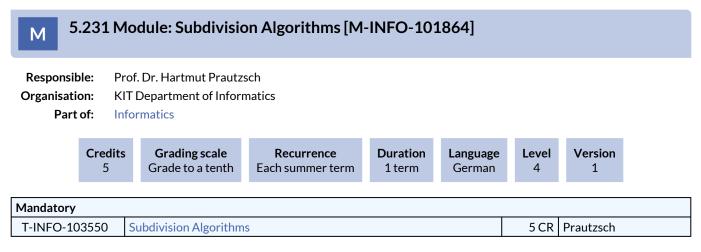
Prerequisites

At least one of the courses "Advanced Stochastic Optimization", "Large-scale Optimization" or "Introduction to Stochastic Optimization" has to be taken.

Content

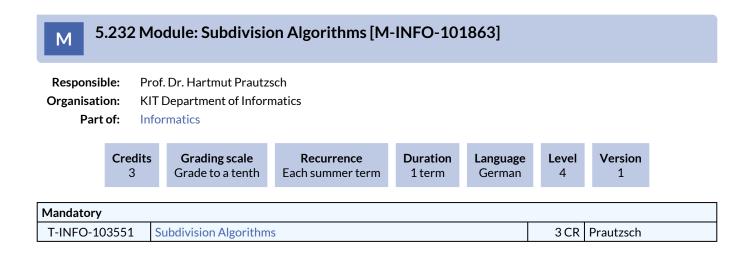
The module focuses on the modeling as well as the imparting of theoretical principles and solution methods for optimization problems with special structure, which occur for example in the stochastic optimization.

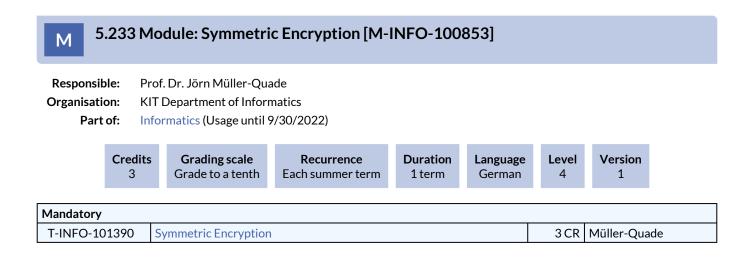
Recommendation

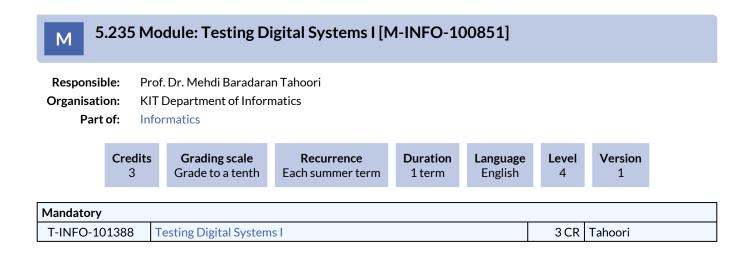

It is recommended to listen to the lecture "Introduction to Stochastic Optimization" before the lecture "Advanced Stochastic Optimization" is visited.

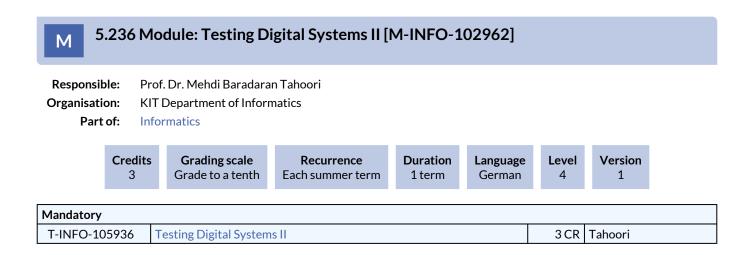
Annotation

The course "Introduction to Stochastic Optimization" will be offered until the winter semester 2020/21 as an additional option in the elective offer of the module. Thereafter, the course can only be selected in the supplementary offer. The courses are sometimes offered irregularly. The curriculum, planned for three years in advance, can be found on the Internet at http://sop.ior.kit.edu/28.php.


Workload


The total workload for this module is approximately 270 hours (9 credits). The allocation is made according to the credit points of the courses of the module. The total number of hours per course is determined by the amount of time spent attending the lectures and exercises, as well as the exam times and the time required to achieve the module's learning objectives for an average student for an average performance.


Prerequisites


None

M 5.234 Module: Telematics [M-INFO-100801]									
Responsible:Prof. Dr. Martina ZitterbartOrganisation:KIT Department of InformaticsPart of:Informatics									
	Credits 6	Grading scale Grade to a tenth	Recurrence Each winter term	Duration 1 term	Language German	Level 4	Version 1		
Mandatory									
T-INFO-10	1338 Te	elematics				6 CR	Zitterbart		

5.237 Module: Transport Infrastructure Policy and Regional Development [M-WIWI-101485]

Responsible: Prof. Dr. Kay Mitusch

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Economics)

Election block: Com	Election block: Compulsory Elective Courses (2 items)					
T-WIWI-103107	Spatial Economics	4,5 CR	Ott			
T-WIWI-100007	Transport Economics	4,5 CR	Mitusch, Szimba			

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The students

- understand the economic issues related to transport and regional development with a main focus on economic policy issues generated by the relationship of transport and regional development with the public sector
- are able to compare different considerations of politics, regulation and the private sector and to analyse and assess the respective decision problems both qualitatively and by applying appropriate methods from economic theory
- are prepared for careers in the public sector, particularly for public companies, politics, regulatory agencies, related consultancies, mayor construction companies or infrastructure project corporations

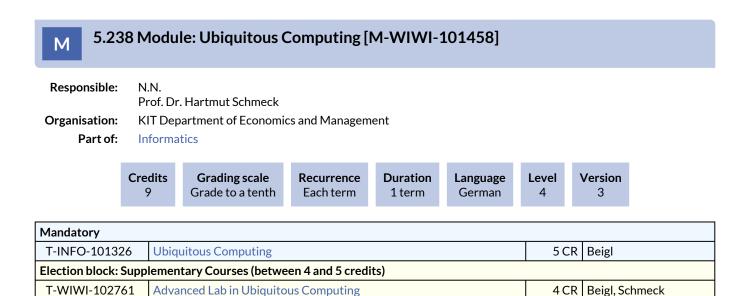
Prerequisites

None

Content

The development infrastructure (e.g. transport, energy, telecommunications) has always been one of the most relevant factors for economic development and particularly influences the development of the regional economy. From the repertoire of state actions, investments into transport infrastructure are often regarded the most important measure to foster regional economic growth. Besides the direct effects of transport policy on passenger and freight transport, a variety of individual economic activities is significantly dependent on the available or potential transport options. Decisions on the planning, financing and realization of mayor infrastructure projects require a solid and far-reaching consideration of direct and indirect growth effects with the occurring costs.

Through its combination of lectures the module reflects the complex interdependencies between infrastructure policy, transport industry and regional policy and provides its participants with a comprehensive understanding of the functionalities of one of the most important sectors of the economy and its relevance for economic policy.


Annotation

The courses Assessment of Public Policies and Projects I (winter term) and Assessment of Public Policies and Projects II (summer term) will no longer be part of this module. Student who have already had exams in this courses can integrate these exams in this module.

Workload

5 CR

Hartenstein

Competence Certificate

T-INFO-101323

The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

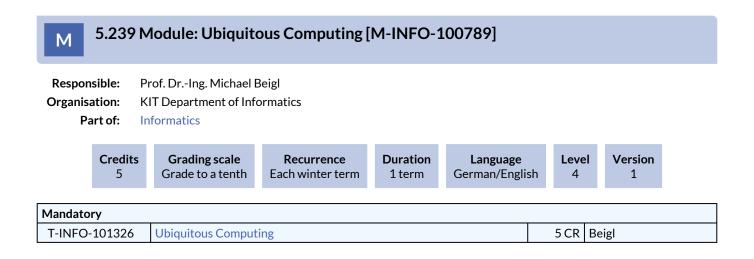
Competence Goal

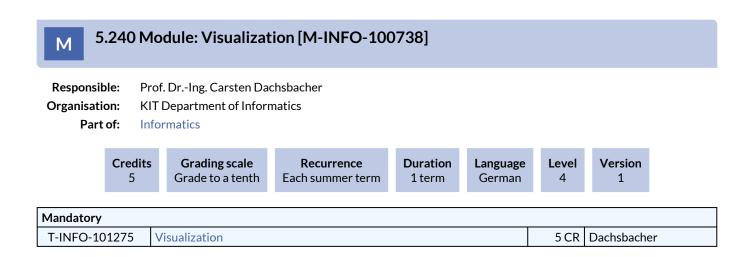
The student

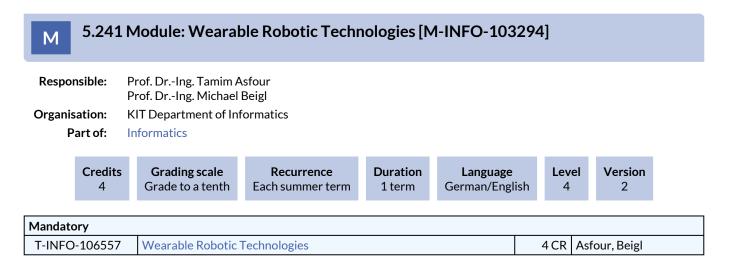
• gets comprehensive knowledge about topics in the area of Ubiquitous Computing

IT-Security Management for Networked Systems

- can design and evaluate ubiquitous systems in different application areas
- acquires appropriate knowledge for addressing specialized aspects in the area of ubiquitous computing


Prerequisites


See German version


Content

Ubiquitous information technology (Ubiquitous Computing) addresses the ubiquitous (or pervasive) availability of information processing. The availability of these systems has the objective to facilitate the operational environment in technical scenarios or in daily life of humans and to enrich it with new capabilities. This module provides fundamentals of ubiquitous computing and further topics like network and Internet technologies, security aspects, the analysis of autonomously operating systems in Organic Computing and also the utilisation of information and communication technologies in highly decentralized energy systems.

Workload

Competence Goal

The students have received fundamental knowledge about wearable robotic technologies and understand the requirements for the design, the interface to the human body and the control of wearable robots. They are able to describe methods for modelling the human neuromusculoskeletal system, the mechatronic design, fabrication and composition of interfaces to the human body. The students understand the symbiotic human-machine interaction as a core topic of Anthropomatics and have knowledge of state of the art examples of exoskeletons, ortheses and protheses.

Content

The lecture starts with an overview of wearable robot technologies (exoskeletons, prostheses and ortheses) and its potentials, followed by the basics of wearable robotics. In addition to different approaches to the design of wearable robots and their related actuator and sensor technology, the lecture focuses on modeling the neuromusculoskeletal system of the human body and the physical and cognitive human-robot interaction for tightly coupled hybrid human-robot systems. Examples of current research and various applications of lower, upper and full body exoskeletons as well as prostheses are presented.

5.242 Module: Web and Data Science [M-WIWI-105368]

Responsible: Prof. Dr. York Sure-Vetter

Organisation: KIT Department of Economics and Management

Part of: Informatics

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	2 terms	German/English	4	1

Election block: Com	Election block: Compulsory Elective Courses (at least 2 items)						
T-WIWI-102666	Knowledge Discovery	4,5 CR	Färber				
T-WIWI-103112	Web Science	4,5 CR	Färber				
T-WIWI-110548	Advanced Lab Informatics (Master)	4,5 CR	Professorenschaft des Fachbereichs Informatik				

Competence Certificate

The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- know the basics of machine learning, data mining and knowledge discovery
- can design, train and evaluate systems that are capable of learning
- carry out knowledge discovery projects, taking into account algorithms, representations and applications.
- will look at current research topics in the field of Web Science and
- learn about the topics Small World Problem, Network Theory, Social Network Analysis, Bibliometrics, Link Analysis and Search,
- apply interdisciplinary thinking and
- apply technological approaches to social science problems.

Prerequisites

None

Content

The module focuses on machine learning and data mining methods for knowledge acquisition from large databases as well as web phenomena and the available technologies.

The lecture Knowledge Discovery gives an overview of approaches of machine learning and data mining for knowledge acquisition from large data sets. These are examined especially with respect to algorithms, applicability to different data representations and the use in real application scenarios.

Knowledge Discovery is an established research area with a large community that investigates methods for discovering patterns and regularities in large amounts of data, including unstructured text. A variety of methods exist to extract patterns and provide previously unknown insights. This information can be predictive or descriptive.

The lecture gives an overview of Knowledge Discovery. Specific techniques and methods, challenges and current and future research topics in this research area will be taught.

Contents of the lecture cover the entire machine learning and data mining process with topics on supervised and unsupervised learning and empirical evaluation. Covered learning methods range from classical approaches like decision trees, support vector machines and neural networks to selected approaches from current research. Learning problems considered include feature vector-based learning and text mining.

The lecture "Web Science" offers an insight into the analysis of social networks and the metrics used in this context. Thereby especially web phenomena and the available technologies.

Web Science is the emerging study of the people and technologies, applications, processes and practices that make the world Wide Web and are shaped and embossed. Web Science aims to develop theories, methods and findings from the entire academic disciplines and work with industry, business, politics and civil society to create an understanding of the Web: The largest sociotechnical infrastructure in the history of mankind.

The lecture gives an introduction to the basic concepts of Web Science. Essential theoretical foundations, Phenomena and methods are presented and explained. This lecture aims to give students a basic knowledge and understanding of the structure and analysis of selected web phenomena and technologies. The topics include the small world problem, Network theory, social network analysis, graph-based search and technologies / standards / architectures.

Workload

The total workload for this module is approximately 270 hours.

5.243 Module: Web Applications and Service-Oriented Architectures (II) [M-INFO-100734]

Responsible: Prof. Dr. Sebastian Abeck

Organisation: Part of:

KIT Department of Informatics Informatics

	Credits 4	Grading scale Grade to a tenth	Recurrence Each summer term	Duration 1 term	Language German	Level 4	Version 1	
Mandatory								
T-INFO-10	01271	Web Applications and	Service-Oriented Archi	tectures (II)		4 CR	Abeck	

Competence Certificate

Siehe Teilleistung

5.244 Module: Web Data Management [M-WIWI-101455]

 Responsible:
 Prof. Dr. York Sure-Vetter

 Organisation:
 KIT Department of Economics and Management

 Part of:
 Informatics

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
9	Grade to a tenth	Each term	1 term	German/English	4	4

Election block: Compulsory Elective Courses (2 items)					
T-WIWI-110848	Semantic Web Technologies	4,5 CR	Käfer		
T-WIWI-103112	Web Science	4,5 CR	Färber		
T-WIWI-110548	Advanced Lab Informatics (Master)	4,5 CR	Professorenschaft des Fachbereichs Informatik		

Competence Certificate

The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- develop ontologies for semantic web technologies und choose suitable representation languages,
- are able to provide data and applications via a cloud-based infrastructure
- transfer the methods and technologies of semantic web technologies and cloud computing to new application sectors,
- evaluate the potential of semantic web technologies and the cloud computing approaches for new application sectors.

Content

The module Web Data Management covers the basic principles, methods and applications for intelligent systems in the World Wide Web. Cloud Services are essential for the decentralized, scalable provision of data and applications as well as the methods of semantic web based on the description of data and services via metadata in form of so called ontologies.

Formal principles and practical aspects such as knowledge modeling and available representation language tools for ontologies are covered in detail. Methods for the realization of intelligent systems within the World Wide Web are treated and applications as in Web 2.0 or Service Science are discussed and evaluated.


Furthermore the application of modern Cloud technologies for the use of software and hardware as a service via internet is introduced. Cloud technologies allow the efficient implementation of applications on distributed computer clusters and permit a high scalability as well as new business models in the internet.

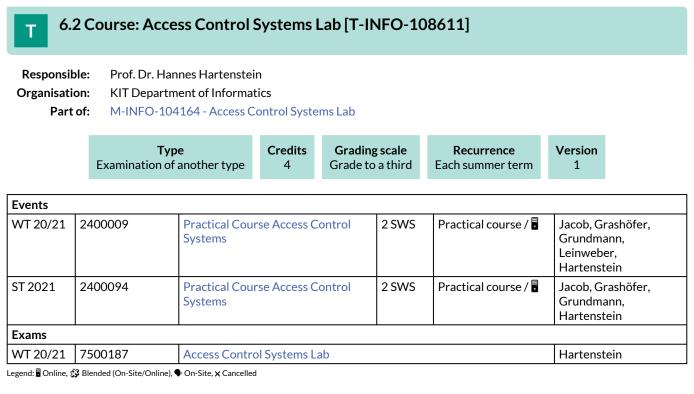
Workload

The total workload for this module is approximately 270 hours (9 credits). The allocation is based on the credits of the courses of the module. The workload for courses with 4.5 credits is about 135 hours.

The total number of hours per course results from the effort required to attend the lectures and exercises as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.

6 Courses

Competence Certificate


Non exam assessment (following §4(2) 3 of the examination regulation). The grade consists of an innovation plan (comparable to an exposé) (15%), a guideline interview (25%), a presentation of the results (20%) and a seminar paper (40%).

Prerequisites

None

Recommendation

The previous attendance of the lecture Innovation Management is recommended.

Below you will find excerpts from events related to this course:

Practical Course Access Control Systems

2400009, WS 20/21, 2 SWS, Language: German/English, Open in study portal

Practical course (P) Online

Content

An information security model defines access rights that express for a given system which subjects are allowed to perform which actions on which objects. A system is said to be secure with respect to a given information security model, if it enforces the corresponding access rights. Thus, access control modeling and access control systems represent the fundamental building blocks of secure services, be it on the Web or in the Internet of Everything.

In this master-level course, we thoroughly investigate the evolution of access control models (access control matrix, role-based access control, attribute access control) and describe usage control models as a unified framework for both access control and digital rights management. The students experiment with real-world access control protocols and technologies and thus apply the contents of the lecture "Access Control Systems: Foundations and Practice" in a real-world context.

Amount of Work

Meeting with advisors: ca. 10h

Preparation and follow-up, completion of assignments: 110h

120h = 4 ECTS

Learning Objectives

The student is able to derive suitable access control models from scenario requirements and is able to specify concrete access control systems.

The student is aware of current access control frameworks and technologies.

The student is able to formulate a suitable system architecture for a given access control scenario.

The student is able to identify concrete technologies to implement an access control system securely and efficiently.

The student is able to evaluate the suitability of a given access control system architecture for a given scenario.

Organizational issues

We plan to hold the meetings for this lab course synchronously via video conferencing.

Please register for this lab course at https://portal.wiwi.kit.edu/ys/3748

Practical Course Access Control Systems

2400094, SS 2021, 2 SWS, Language: German/English, Open in study portal

Practical course (P) Online

Content

An information security model defines access rights that express for a given system which subjects are allowed to perform which actions on which objects. A system is said to be secure with respect to a given information security model, if it enforces the corresponding access rights. Thus, access control modeling and access control systems represent the fundamental building blocks of secure services, be it on the Web or in the Internet of Everything.

In this master-level course, we thoroughly investigate the evolution of access control models (access control matrix, role-based access control, attribute access control) and describe usage control models as a unified framework for both access control and digital rights management. The students experiment with real-world access control protocols and technologies and thus apply the contents of the lecture "Access Control Systems: Foundations and Practice" in a real-world context.

Amount of Work

Lab Sessions: $6 \times 2h = 12h$ Lab Tasks: $6 \times 10h = 60h$ Lab Reports: $6 \times 4h = 24h$ Buffer: $6 \times 2h = 12h$ Final Presentation: 12h

Σ = 120h = 4 ECTS

Learning Objectives

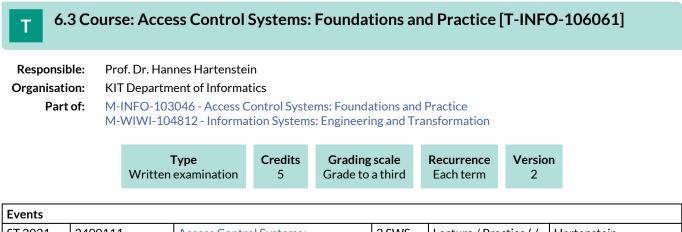
The student is able to derive suitable access control models from scenario requirements and is able to specify concrete access control systems.

The student is aware of current access control frameworks and technologies.

The student is able to formulate a suitable system architecture for a given access control scenario.

The student is able to identify concrete technologies to implement an access control system securely and efficiently.

The student is able to evaluate the suitability of a given access control system architecture for a given scenario.

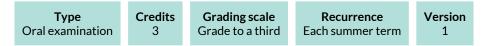

Organizational issues

We will hold all meetings for this seminar synchronously via video conferencing at the scheduled dates on Friday, 14:00 via Microsoft Teams.

Please register for the lab in the WiWi portal: https://portal.wiwi.kit.edu/

You will be notified via WiWi portal mail about access to MS Teams and ILIAS.

The current registration link can be found on our website: https://dsn.tm.kit.edu/teaching.php



 ST 2021
 2400111
 Access Control Systems: Foundations and Practice
 3 SWS
 Lecture / Practice (/ E
 Hartenstein, Leinweber, Grashöfer

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.4 Course: Accessibility - Assistive Technologies for Visually Impaired Persons [T-INFO-101301]

Responsible:Prof. Dr.-Ing. Rainer StiefelhagenOrganisation:KIT Department of InformaticsPart of:M-INFO-100764 - Accessibility -

M-INFO-100764 - Accessibility - Assistive Technologies for Visually Impaired Persons

Events					
WT 20/21	2400109	Accessibility - Assistive Technologies for Visually Impaired Persons	2 SWS	Lecture / 🖥	Stiefelhagen, Schwarz
ST 2021	2400052	Accessibility - Assistive Technologies for Visually Impaired Persons	2 SWS	Lecture / 🖥	Stiefelhagen, Schwarz
Exams					
WT 20/21	7500038	Accessibility - Assistive Technologies for Visually Impaired Persons			Stiefelhagen
ST 2021	7500007	Accessibility - Assistive Technologies for Visually Impaired Persons			Stiefelhagen

Legend: Dolline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Accessibility - Assistive Technologies for Visually Impaired Persons 2400109, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

According to the World Health Organization there are 285 million visually impaired persons worldwide, of which 39 million are blind and 246 million have low vision. The partial of full loss of sight leads to a number of challenges that visually impaired persons have to face. These include difficulties in mobility and navigation in unknown terrain, missing information in social interaction or handling and finding of objects in daily live.

There are already several technical aids available to support blind and visually impaired persons. So digitized texts can be made accessible by sound output or Braille display. There are also various tools which are especially designed for blind persons such as 'speaking' clocks or pocket calculators. However, the most important technical aid by far to improve mobility is the white cane. Although a number of electronic aids to detect obstacles and to support orientation have been developed over the last years they only offer reduced functionality for a relatively high price and are therefore rarely used.

The lecture will give an overview about IT-based assistive technology (AT) for people with visual impairments. It covers the following topics:

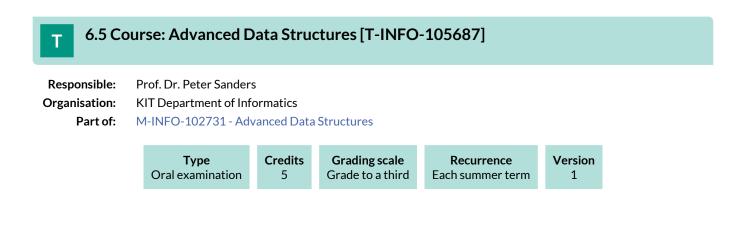
- Information about visual impairments and their impact
- Existing assistive technology for various application areas
- AT to access information content
- Designing barrier-free software & websites

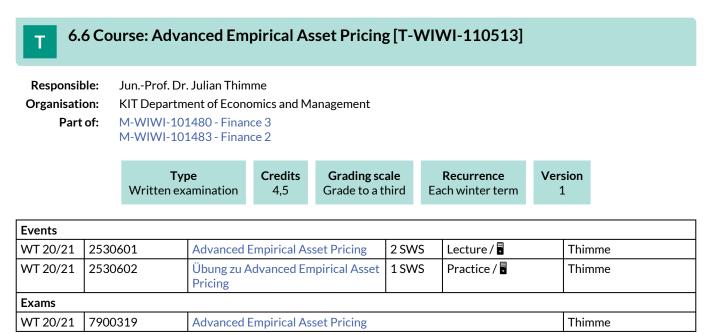
• Possibilities and ongoing research in using computer vision methods to develop novel AT for the visually impaired, e.g. to support mobility, and content access among other things.

Accessibility - Assistive Technologies for Visually Impaired Persons 2400052, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content


According to the World Health Organization there are 285 million visually impaired persons worldwide, of which 39 million are blind and 246 million have low vision. The partial of full loss of sight leads to a number of challenges that visually impaired persons have to face. These include difficulties in mobility and navigation in unknown terrain, missing information in social interaction or handling and finding of objects in daily live.


There are already several technical aids available to support blind and visually impaired persons. So digitized texts can be made accessible by sound output or Braille display. There are also various tools which are especially designed for blind persons such as 'speaking' clocks or pocket calculators. However, the most important technical aid by far to improve mobility is the white cane. Although a number of electronic aids to detect obstacles and to support orientation have been developed over the last years they only offer reduced functionality for a relatively high price and are therefore rarely used.

The lecture will give an overview about IT-based assistive technology (AT) for people with visual impairments. It covers the following topics:

- Information about visual impairments and their impact
- Existing assistive technology for various application areas
- AT to access information content
- Designing barrier-free software & websites

• Possibilities and ongoing research in using computer vision methods to develop novel AT for the visually impaired, e.g. to support mobility, and content access among other things.

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The success control takes place in form of a written examination (60 min) during the semester break (according to §4(2), 1 SPO). If the number of participants is low, an oral examination (according to §4 (2), 2 SPO) may also be offered. The examination is offered every semester and can be repeated at any regular examination date.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Recommendation

We strongly recommend knowledge of the basic topics in investments (bachelor course), which will be necessary to be able to follow the course. In addition, prior participation in the Asset Pricing Master course is strongly recommended.

Annotation

New course from winter semester 2019/2020.

Below you will find excerpts from events related to this course:

Advanced Empirical Asset Pricing

2530601, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

In this course we will discuss the fundamentals of Asset Pricing and how to test them. Although this is an Empirical Asset Pricing course, we deal with some concepts from Asset Pricing Theory that we can test afterwards (CAPM, ICAPM, CCAPM, recursive utility). Besides, the course will cover the most important empirical methods to do so. For that purpose, we will discuss the overarching tool *Generalized Method of Moments*, and the special cases of OLS and FMB regressions. Every second week, we will meet for a programing session, in which we will look at the data to draw our own conclusions. An introduction to the software MATLAB will be given at the beginning of the course. Students should bring a laptop to these sessions. Programing skills are not required but helpful.

We start with a review of the Stochastic Discount Factor, which is already known from the course "Asset Pricing". We then derive the CAPM and the Consumption-CAPM as special cases from the general consumption-savings optimization problem of the rational investor. In the first part of the course we discuss the CAPM and, as natural extensions, models with multiple factors. Prominent phenomena such as the value premium and momentum are discussed. In the second part of the lecture we will study extensions of Consumption-CAPM and study the implications of exotic preferences.

Literature Basisliteratur Asset pricing / Cochrane, J.H. - Rev. ed., Princeton Univ. Press, 2005.

zur Vertiefung/ Wiederholung

Investments and Portfolio Management / Bodie, Z., Kane, A., Marcus, A.J. - 9. ed., McGraw-Hill, 2011.

The econometrics of financial markets / Campbell, J.Y., Lo, A.W., MacKinlay, A.C. - 2. printing, with corrections, Princeton Univ. Press, 1997.

T 6.7 Co	6.7 Course: Advanced Game Theory [T-WIWI-102861]					
Responsible:	Prof. Dr. Karl-Martin Ehrhart Prof. Dr. Clemens Puppe Prof. Dr. Johannes Philipp Reiß					
Organisation:	KIT Department of Economics and Management					
Part of:	M-WIWI-101453 - Applied Strategic Decisions					

M-WIWI-101500 - Microeconomic Theory M-WIWI-101502 - Economic Theory and its Application in Finance

Туре	Credits	Grading scale	Recurrence	Version
Written examination	4,5	Grade to a third	Each winter term	1

Events					
WT 20/21	2521533	Advanced Game Theory	2 SWS	Lecture / 🖥	Puppe
WT 20/21	2521534	Übung zu Advanced Game Theory	1 SWS	Practice /	Puppe
Exams					
WT 20/21	7900351	Advanced Game Theory			Puppe

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

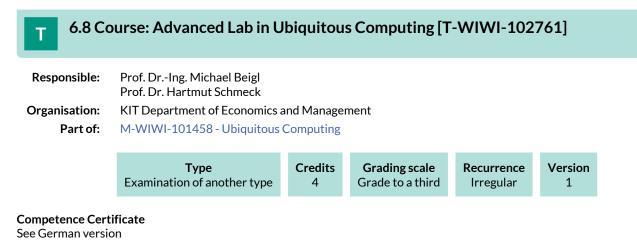
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None

Recommendation

Basic knowledge of mathematics and statistics is assumed.


Below you will find excerpts from events related to this course:

Advanced Game Theory

2521533, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Prerequisites None

Annotation See German Version Т

6.9 Course: Advanced Lab Informatics (Master) [T-WIWI-110548]

Responsible:Professorenschaft des Fachbereichs InformatikOrganisation:KIT Department of Economics and ManagementPart of:M-WIWI-101455 - Web Data Management
M-WIWI-101456 - Intelligent Systems and Services
M-WIWI-101477 - Development of Business Information Systems
M-WIWI-105366 - Artificial Intelligence
M-WIWI-105368 - Web and Data Science

Туре	Credits	Grading scale	Recurrence	Version
Examination of another type	4,5	Grade to a third	Each term	1

Events					
WT 20/21	2512205	Lab Realisation of innovative services (Master)	3 SWS	Practical course /	Oberweis, Schiefer, Schüler, Toussaint
WT 20/21	2512403	Practical Course Blockchain Hackathon (Master)		Practical course / 🕃	Sunyaev, Kannengießer, Sturm
WT 20/21	2512501	Practical Course Cognitive Automobiles and Robots (Master)	3 SWS	Practical course /	Zöllner
WT 20/21	2512600	Project lab Information Service Engineering (Master)	2 SWS	Practical course / 🕃	Sack
WT 20/21	2513312	Seminar Linked Data and the Semantic Web (Bachelor)	2 SWS	Seminar / 🖥	Färber, Käfer, Heling, Bartscherer
WT 20/21	2513313	Seminar Linked Data and the Semantic Web (Master)	2 SWS	Seminar / 🖥	Färber, Käfer, Heling, Bartscherer
ST 2021	2512205	Lab Realisation of innovative services (Master)	3 SWS	Practical course / 🕃	Oberweis, Schiefer, Schüler, Toussaint
ST 2021	2512207	Lab Automation in Everyday Life (Master)	3 SWS	Practical course /	Oberweis, Forell, Frister
ST 2021	2512401	Development of Sociotechnical Information Systems (Master)	3 SWS	Practical course /	Sunyaev, Pandl
ST 2021	2512403	Advanced Lab Blockchain Hackathon (Master)		Practical course /	Sunyaev, Beyene, Kannengießer
ST 2021	2512500	Project Lab Machine Learning	3 SWS	Practical course / 🕃	Zöllner
ST 2021	2512555	Practical lab Security, Usability and Society (Master)	3 SWS	Practical course /	Strufe, Mayer, Arias Cabarcos, Berens, Mossano, Düzgün, Beckmann
Exams	•	1	1		
WT 20/21	7900046	Advanced Lab Security (Master)			Volkamer
WT 20/21	7900102	Advanced Lab Information Service E	ngineering	g (Master)	Sack
WT 20/21	7900107	Advanced Lab Cognitive Automobile	Advanced Lab Cognitive Automobile and Robots (Master)		
WT 20/21	7900138	Advanced Lab Security, Usability and	Volkamer		
WT 20/21	7900141	Advanced Lab Blockchain Hackathon (Master)			Sunyaev
WT 20/21	7900156	Advanced Lab Implementation of Innovative Services (Master) Ober			Oberweis
ST 2021	7900020	Lab Automation in Everyday Life (Master)			Oberweis
ST 2021	7900086	Project Lab Machine Learning			Zöllner
ST 2021	7900148	Advanced Lab Realization of innovative services (Master)			Oberweis
ST 2021	7900172	Lab Blockchain Hackathon (Master)			Sunyaev
ST 2021	7900173	Advanced Lab Development of Socio (Master)	technical	Information Systems	Sunyaev
ST 2021	7900178	Practical lab Security, Usability and S	Society (Ma	aster)	Volkamer

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites

None

Annotation

The title of this course is a generic one. Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Lab Realisation of innovative services (Master)Practical course (P)2512205, WS 20/21, 3 SWS, Language: German, Open in study portalOnline

Content

As part of the lab, the participants should work together in small groups to realize innovative services (mainly for students). Further information can be found on the ILIAS page of the lab.

Organizational issues

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Practical Course Cognitive Automobiles and Robots (Master)Practical course (P)2512501, WS 20/21, 3 SWS, Language: German/English, Open in study portalOnline

Content

The lab is intended as a practical supplement to lectures such as "Machine Learning". The theoretical basics are applied in the lab course. The aim of the lab course is that the participants work together to design, develop and evaluate a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

In addition to the scientific objectives involved in the investigation and application of the methods, aspects of project-specific teamwork in research (from specification to presentation of the results) are also developed in this practical course.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and implementation and evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:

- Students can practically apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles.
- Students master the analysis and solution of corresponding problems in a team.
- Students can evaluate, document and present their concepts and results.

Recommendations:

Attendance of the lecture machine learning, C/C++ knowledge, Python knowledge

Workload:

The workload of 4.5 credit points consists of the time spent in the lab for practical implementation of the selected solution, as well as the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Organizational issues

Anmeldung und weitere Informationen sind im Wiwi-Portal zu finden.

Registration and further information can be found in the WiWi-portal.

Project lab Information Service Engineering (Master)

2512600, WS 20/21, 2 SWS, Language: English, Open in study portal

Practical course (P) Blended (On-Site/Online)

The **ISE project course** is based on the summer semester lecture **"Information Service Engineering**". The topics of the ISE project course focus on artificial intelligence based applications. In particular, we are covering the following:

- Natural Language Processing
- Knowledge Graphs
- Deep Learning

Goal of the course is to work on a research problem in small groups (3-4 students) related to the ISE lecture topics, i.e. Natural Language Processing, Knowledge Graphs, and Machine Learning. The solution of the given research problem requires the development of a software implementation.

The project will be worked on in teams of 3-4 students each, guided by a tutor from the teaching staff.

Required coursework includes:

- Mid term presentation (5-10 min)
- Final presentation (10-15 min)
- Course report (c. 20 pages)
- Participation and contribution of the students during the course
- Software development and delivery

Notes:

The ISEproject course can also be credited as a seminar.

The project will be worked on in teams of 3-4 students each, guided by a tutor from the teaching staff.

The project course will be restricted to 15 participants.

Participation in the lecture "Information Service Engineering" (summer semester) is required.

ISE Tutor Team:

- Dr. Mehwish Alam
- Dr. Danilo Dessi
- M. Sc. Genet Asefa Gesese
- M. Sc. Fabian Hoppe
- M. Sc. Zahra Rezaie
- M. Sc. Sasha Vsesviatska
- B. Sc. Tabea Tietz

Organizational issues

Projektpraktikum Information Service Engineering can also be credited as a seminar.

Seminar Linked Data and the Semantic Web (Bachelor)

2513312, WS 20/21, 2 SWS, Language: German/English, Open in study portal

Seminar (S) Online

Linked Data is a way of publishing data on the web in a machine-understandable fashion. The aim of this seminar is to build applications and devise algorithms that consume, provide, or analyse Linked Data.

The Linked Data principles are a set of practices for data publishing on the web. Linked Data builds on the web architecture and uses HTTP for data access, and RDF for describing data, thus aiming towards web-scale data integration. There is a vast amount of data available published according to those principles: recently, 4.5 billion facts have been counted with information about various domains, including music, movies, geography, natural sciences. Linked Data is also used to make web-pages machine-understandable, corresponding annotations are considered by the big search engine providers. On a smaller scale, devices on the Internet of Things can also be accessed using Linked Data which makes the unified processing of device data and data from the web easy.

In this seminar, students will build prototypical applications and devise algorithms that consume, provide, or analyse Linked Data. Those applications and algorithms can also extend existing applications ranging from databases to mobile apps.

For the seminar, programming skills or knowledge about web development tools/technologies are highly recommended. Basic knowledge of RDF and SPARQL are also recommended, but may be acquired during the seminar. Students will work in groups. Seminar meetings will take place as 'Block-Seminar'.

Topics of interest include, but are not limited to:

- Travel Security
- Geo data
- Linked News
- Social Media

The exact dates and information for registration will be announced at the event page.

Seminar Linked Data and the Semantic Web (Master)	Seminar (S)
2513313, WS 20/21, 2 SWS, Language: German/English, Open in study portal	Online

Content

Linked Data is a way of publishing data on the web in a machine-understandable fashion. The aim of this seminar is to build applications and devise algorithms that consume, provide, or analyse Linked Data.

The Linked Data principles are a set of practices for data publishing on the web. Linked Data builds on the web architecture and uses HTTP for data access, and RDF for describing data, thus aiming towards web-scale data integration. There is a vast amount of data available published according to those principles: recently, 4.5 billion facts have been counted with information about various domains, including music, movies, geography, natural sciences. Linked Data is also used to make web-pages machine-understandable, corresponding annotations are considered by the big search engine providers. On a smaller scale, devices on the Internet of Things can also be accessed using Linked Data which makes the unified processing of device data and data from the web easy.

In this seminar, students will build prototypical applications and devise algorithms that consume, provide, or analyse Linked Data. Those applications and algorithms can also extend existing applications ranging from databases to mobile apps.

For the seminar, programming skills or knowledge about web development tools/technologies are highly recommended. Basic knowledge of RDF and SPARQL are also recommended, but may be acquired during the seminar. Students will work in groups. Seminar meetings will take place as 'Block-Seminar'.

Topics of interest include, but are not limited to:

- Travel Security
- Geo data
- Linked News
- Social Media

The exact dates and information for registration will be announced at the event page.

Lab Realisation of innovative services (Master)

2512205, SS 2021, 3 SWS, Language: German, Open in study portal

Practical course (P) Blended (On-Site/Online)

Content

As part of the lab, the participants should work together in small groups to realize innovative services (mainly for students). Further information can be found on the ILIAS page of the lab.

Organizational issues

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

|--|

Lab Automation in Everyday Life (Master)

2512207, SS 2021, 3 SWS, Language: German, Open in study portal

Practical course (P) Online

Content

As part of the lab, various topics on everyday automation are offered. During the lab, the participants will gain an insight into problem-solving oriented project work and work on a project together in small groups.

Further information can be found on the ILIAS page of the lab.

Organizational issues

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Development of Sociotechnical Information Systems (Master)Practical course (P)2512401, SS 2021, 3 SWS, Language: German/English, Open in study portalOnline

Content

The aim of the lab is to get to know the development of socio-technical information systems in different application areas. In the event framework, you should develop a suitable solution strategy for your problem alone or in group work, collect requirements, and implement a software artifact based on it (for example, web platform, mobile apps, desktop application). Another focus of the lab is on the subsequent quality assurance and documentation of the implemented software artifact.

Registration information will be announced on the course page.

Project Lab Machine Learning

2512500, SS 2021, 3 SWS, Language: German/English, Open in study portal

Practical course (P) Blended (On-Site/Online)

Content

The lab is intended as a practical supplement to lectures such as "Machine Learning". The theoretical basics are applied in the lab course. The aim of the lab course is that the participants work together to design, develop and evaluate a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

In addition to the scientific objectives involved in the investigation and application of the methods, aspects of project-specific teamwork in research (from specification to presentation of the results) are also developed in this practical course.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and implementation and evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:

- Students can practically apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles.
- Students master the analysis and solution of corresponding problems in a team.
- Students can evaluate, document and present their concepts and results.

Recommendations:

Attendance of the lecture machine learning, C/C++ knowledge, Python knowledge

Workload:

The workload of 4.5 credit points consists of the time spent in the lab for practical implementation of the selected solution, as well as the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Organizational issues

Anmeldung und weitere Informationen sind im Wiwi-Portal zu finden.

Registration and further information can be found in the WiWi-portal.

Practical lab Security, Usability and Society (Master)

Practical course (P) Online

The internship "Security, Usability and Society" will cover topics both of usable security and privacy programming, and how to conduct user studies. This internship will be only in English. The kick-off, the presentations, and every written material to be graded must be in English. Communications with supervisors can be in German. WiWi link: https://portal.wiwi.kit.edu/ys/4629

Important dates:

Kick-off: 06.04.2021, 10:00-11:00 CET in Microsoft Teams - Link

Report + code submission : 07.09.2021, 23:59 CET

Presentation deadline : 20.09.2021, 23:59 CET

Presentation day: 24.09.2021, 09:00 CET

Topics:

Privacy Friendly apps

In this subject, students complete an app (or an extension of an app) among our Privacy-Friendly Apps. Please click the following link to know more about them: https://secuso.aifb.kit.edu/english/105.php. Students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

• Notes 2.0

Programming Usable Security Intervention

In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, eg as an extension. Eg TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as before, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

- Password Manager Enrolment Add-On
- Portfolio Graphical Recognition-Based Passwords with Gamepads
- Visualization app to explore Facebook behavioral data collection
- Authenticating on AR glasses: Implementing an authentication scheme for the Google Glass

Designing Security User studies (online studies only)

These topics are related to how to set up and conducting user studies of various types. This year, due to the Corona outbreak, we decided to conduct online studies only; otherwise, interviews and in lab studies would have been possible. At the end of the semester, the students present a report / paper and a talk in which they present their results.

- Neurotechnologies, Neuroprivacy, and User Acceptance
- Expert feedback for an anti-phishing webpage template (English only)
- "Your website has been hacked" How to inform business owners about security issues on their webpages in more sensitive ways

Please, note that registration is not required to participate in the kick-off meeting.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php).

6.10 Course: Advanced Lab Security, Usability and Society [T-WIWI-108439]

Responsible:Prof. Dr. Melanie VolkamerOrganisation:KIT Department of Economics and ManagementPart of:M-WIWI-104520 - Human Factors in Security and Privacy

	•	r pe If another type	Credits 4,5	Grading Grade to	-	Recurrence Each summer term	Version 2
Events							
WT 20/21	2512554	Practical Cou and Society (E		, Usability	3 SWS	Practical course /	Volkamer, Strufe, Mayer, Arias Cabarcos, Aldag, Berens, Düzgün, Mossano, Beckmann
WT 20/21	2512555	Practical Cou and Society (N		, Usability	3 SWS	Practical course /	Volkamer, Strufe, Mayer, Arias Cabarcos, Aldag, Berens, Düzgün, Mossano, Beckmann
ST 2021	2612554		Practical lab Security, Usability and Society (Bachelor)		3 SWS	Practical course /	Strufe, Mayer, Arias Cabarcos, Berens, Mossano, Beckmann
Exams							
WT 20/21	7900116	Advanced Lab	Security, U	sability and	Society (Bachelor)	Volkamer
WT 20/21	7900138	Advanced Lab Security, Usability and			Society (Master)	Volkamer
ST 2021	7900029	Practical lab S	ecurity, Usa	bility and S	ociety (Ba	achelor)	Volkamer

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and possibly
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites

None

Recommendation

Knowledge from the lecture "Information Security" is recommended.

Annotation

The course is expected to be offered from winter term 2018/2019.

Contents:

In the course of the programming lab, changing topics from the field of Human Factors in Security und Privacy will be worked on.

Learning goals:

The student

- can apply the basics of information security
- is able to implement appropriate measures to achieve different protection goals
- can structure a software project in the field of information security
- can use the Human Centred Security and Privacy by Design technique to develop user-friendly software
- can explain and present technical facts and the results of the programming lab in oral and written form

Below you will find excerpts from events related to this course:

Practical Course Security, Usability and Society (Bachelor)

2512554, WS 20/21, 3 SWS, Language: German/English, Open in study portal

Practical course (P) Online

Content

The internship "Security, Usability, and Society" covers topics such as user-friendly security and data protection programs as well as the implementation of user studies. The kick-off and the final presentations will be in English. The language of communication with the supervisor can - depending on the topic / supervisor - be German.

Important dates:

Kick-off: (mandatory) 3.11.2020, 10:00-11:30, online. Link: Microsoft Teams

Final submission: 14.03.2021, 23:59

Presentation: March 14, 2021

Topics:

Privacy-friendly apps

In this topic area, students complete an app (or an extension of an app) among our Privacy-Friendly Apps (PFA). Please click the following link to know more about them: https://secuso.aifb.kit.edu/english/105.php . Students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

- NoPhish 2.0
- Notes 2.0

Programming usable security measures

In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, eg as an extension. Some examples are TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) orPassSec + (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as for PFA, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

- Password Manager Enrolment Add-On
- Visualization app to explore Facebook behavioral data collection
- Portfolio Graphical Recognition-Based Passwords with Gamepads
- Implementation of an anti-phishing browser extension (English only)

Usable security user studies (online studies only)

These topics relate to setting up or analysing the results of user studies of various kinds. This year, due to the Corona outbreak, we decided to only run online studies. Otherwise interviews and laboratory tests would have been possible. At the end of the semester, the students present a report / work and a lecture in which they present their results.

- Investigating user reaction to password data breaches
- Expert feedback for an anti-phishing webpage template (English only)

Please, note that registration is not required to participate in the kick-off meeting.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website (https://secuso.aifb.kit.edu/Studium_und_Lehre.php).

Practical Course Security, Usability and Society (Master) 2512555, WS 20/21, 3 SWS, Language: German/English, Open in study portal Practical course (P) Online

The internship "Security, Usability, and Society" covers topics such as user-friendly security and data protection programs as well as the implementation of user studies. The kick-off and the final presentations will be in English. The language of communication with the supervisor can - depending on the topic / supervisor - be German.

Important dates:

Kick-off: (mandatory) 3.11.2020, 10:00-11:30, online. Link: Microsoft Teams

Final submission: 14.03.2021, 23:59

Presentation: March 14, 2021

Topics:

Privacy-friendly apps

In this topic area, students complete an app (or an extension of an app) among our Privacy-Friendly Apps (PFA). Please click the following link to know more about them: https://secuso.aifb.kit.edu/english/105.php . Students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

- NoPhish 2.0
- Notes 2.0

Programming usable security measures

In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, eg as an extension. Some examples are TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) orPassSec + (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as for PFA, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

- Password Manager Enrolment Add-On
- Visualization app to explore Facebook behavioral data collection
- Portfolio Graphical Recognition-Based Passwords with Gamepads
- Implementation of an anti-phishing browser extension (English only)

Execution of usable security user studies (online studies only)

These topics relate to setting up or analysing the results of user studies of various kinds. This year, due to the Corona outbreak, we decided to only run online studies. Otherwise interviews and laboratory tests would have been possible. At the end of the semester, the students present a report / work and a lecture in which they present their results.

- Investigating user reaction to password data breaches
- Expert feedback for an anti-phishing webpage template (English only)
- Implementing Zero-Trust Authentication Schemes

Please, note that registration is not required to participate in the kick-off meeting.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website (https://secuso.aifb.kit.edu/Studium_und_Lehre.php).

Practical lab Security, Usability and Society (Bachelor) 2612554, SS 2021, 3 SWS, Language: German/English, Open in study portal

Practical course (P) Online

The internship "Security, Usability and Society" will cover topics both of usable security and privacy programming, and how to conduct user studies. This internship will be only in English. The kick-off, the presentations, and every written material to be graded must be in English. Communications with supervisors can be in German. WiWi portal: https://portal.wiwi.kit.edu/ys/4628

Important dates:

Kick-off: 06.04.2021, 10:00-11:00 CET in Microsoft Teams - Link

Report + code submission : 07.09.2021, 23:59 CET

Presentation deadline : 20.09.2021, 23:59 CET

Presentation day: 24.09.2021, 09:00 CET

Topics:

Privacy Friendly apps

In this subject, students complete an app (or an extension of an app) among our Privacy-Friendly Apps. Please click the following link to know more about them: https://secuso.aifb.kit.edu/english/105.php . Students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

• Notes 2.0

Programming Usable Security Intervention

In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, eg as an extension. Eg TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as before, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

- Password Manager Enrolment Add-On
- Portfolio Graphical Recognition-Based Passwords with Gamepads
- Visualization app to explore Facebook behavioral data collection

Designing Security User studies (online studies only)

These topics are related to how to set up and conducting user studies of various types. This year, due to the Corona outbreak, we decided to conduct online studies only; otherwise, interviews and in lab studies would have been possible. At the end of the semester, the students present a report / paper and a talk in which they present their results.

- Neurotechnologies, Neuroprivacy, and User Acceptance
- Expert feedback for an anti-phishing webpage template (English only)
- "Your website has been hacked" How to inform business owners about security issues on their webpages in more sensitive ways

Please, note that registration is not required to participate in the kick-off meeting.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php).

6.11 Course: Advanced Machine Learning [T-WIWI-109921] Т **Responsible:** Prof. Dr. Andreas Geyer-Schulz Dr. Abdolreza Nazemi Organisation: KIT Department of Economics and Management Part of: M-WIWI-105661 - Data Science: Intelligent, Adaptive, and Learning Information Services Credits **Grading scale** Recurrence Version Туре Written examination 4,5 Grade to a third Each summer term 1 **Events** ST 2021 2540535 2 SWS Lecture / Nazemi Advanced Machine Learning ST 2021 2540536 1 SWS Practice / **Exercise Advanced Machine** Nazemi Learning Exams

 WT 20/21
 7900253
 Advanced Machine Learning (Nachklausur 2020)
 Geyer-Schulz

Legend: 🖥 Online, 🔀 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

None

Below you will find excerpts from events related to this course:

V

Advanced Machine Learning 2540535, SS 2021, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

In recent years, the volume, variety, velocity, veracity, and variability of available data have increased due to improvements in computational and storage power. The rise of the Internet has made available large sets of data that allow us to use and merge them for different purposes. Data science helps us to extract knowledge from the continually-increasing large datasets. This course will introduce students to a wide range of machine learning and statistical techniques such as deep learning, LASSO, and support vector machine. You will get familiar with text mining, and the tools you need to analyze the various facets of data sets in practice. Students will learn theory and concepts with real data sets from different disciplines such as marketing, finance, and business.

Tentative Course Outline:

- Introduction
- Statistical Inference
- Shrinkage Methods
- Model Assessment and Selection
- Tree-based Machine Learning Algorithms
- Dimensionality Reduction
- Neural Networks and Deep Learning
- Natural Language Processing with Deep Learning
- Support Vector Machine

Time of attendance

- Attending the lecture: 13 x 90min = 19h 30m
- Attending the exercise classes: 7 x 90min = 10h 30m

The student will learn

- A wide range of machine learning algorithms and their weaknesses.
- The fundamental issues and challenges: data, high-dimension, train, model selection, etc.
- How to imply machine learning algorithms for real-world applications.
- The fundamentals of deep learning, main research activities, and on-going research in this field.

Literature

- Alpaydin, E. (2014). Introduction to Machine Learning. Third Edition, MIT Press.
- De Prado, M. L. (2018). Advances in Financial Machine Learning. John Wiley & Sons.
- Goodfellow, I., Bengio, Y., and A. Courville (2017). Deep Learning. MIT Press. (online available)
- Hastie, T., Tibshirani, R., and J. Friedman (2009). Elements of Statistical Learning. Second Edition. Springer. (online available)
- Leskovec, J., Rajaraman, A., Ullman, J. D., (2014). Mining of Massive Datasets. Cambridge University Press. (online available)
- Witten, I. H., Eibe, F., Hall, M. A., Pal, C. J. (2016). Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann.

		Type n of another type	Credits 9	Grading scale Grade to a third	Recurrence Each term	Versi 1	on
Events							
ST 2021	2530357	Advanced Machine Learning and Data Science		and 4 SWS	Practical course,	/ 🖥 🛛 U	llrich

Legend: Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment is carried out in form of a written thesis based on the course "Advanced Machine Learning and Data Science".

Annotation

The course is targeted to students with a major in Data Science and/or Machine Learning. It offers students the opportunity to develop hands-on knowledge on new developments in data science and machine learning.

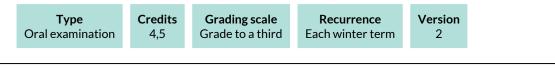
Below you will find excerpts from events related to this course:

\mathbf{V}	Advanced Machine Learning and Data Science	Practical course (P)
V	2530357, SS 2021, 4 SWS, Language: English, Open in study portal	Online

Content

The course is targeted to students with a major in Data Science and/or Machine Learning. It offers students the opportunity to develop hands-on knowledge on new developments in data science and machine learning.

Organizational issues


14-tägig, tba

Literature

Literatur wird in der ersten Vorlesung bekannt gegeben.

6.13 Course: Advanced Management Accounting [T-WIWI-102885]

Responsible:Prof. Dr. Marcus WoutersOrganisation:KIT Department of Economics and ManagementPart of:M-WIWI-101510 - Cross-Functional Management Accounting

Events					
WT 20/21	2579907	Advanced Management Accounting	4 SWS	Lecture / Practice (/	Wouters, Riar
Exams					
WT 20/21	79-2579907-M	Advanced Management Accounting			Wouters

Legend: 🖥 Online, 🗱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of an oral exam (30 min) (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None.

Recommendation

The course requires significant prior knowledge of Management Accounting, similar to the content of the courses MA 1 and 2, although completion of these particular courses is not a formal requirement.

Annotation

This course is held in English. Lectures and tutorials are integrated.

The course is compulsory and must be examined.

Students who are interested in attending this course should send an e-mail to Professor Wouters (marc.wouters∂kit.edu).

Below you will find excerpts from events related to this course:

Advanced Management Accounting

2579907, WS 20/21, 4 SWS, Language: English, Open in study portal

Lecture / Practice (VÜ) On-Site

This course is held in English. Students who are interested in attending this course should send an e-mail to Professor Wouters (marc.wouters@kit.edu).

Inhalt:

• The course addresses several topics where management accounting is strongly related to marketing, finance, or organization and strategy, such as customer value propositions, financial performance measures, managing new product development, and technology investment decisions.

Learning objectives:

- Students will be able to consider advanced management accounting methods in an interdisciplinary way and to apply these to managerial decision-making problems in operations and innovation.
- They will also be able to identify relevant research results on such methods.

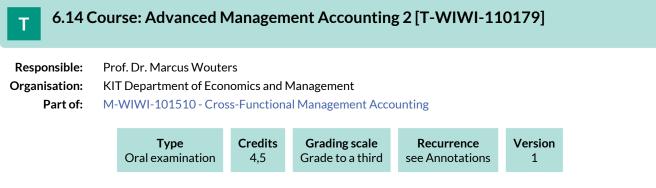
Examination:

- The assessment consists of an oral exam (30 min) taking place in the recess period (according to § 4 (2) No. 2 of the examination regulation).
- The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Required prior Courses:

• The course is compulsory and must be examined.

Recommendations:


• The course requires significant prior knowledge of Management Accounting, similar to the content of the courses MA 1 and 2, although completion of these particular courses is not a formal requirement.

Workload:

• The total workload for this course is approximately 135 hours. For further information see German version.

Literature

Literature is mostly made available via ILIAS.

Competence Certificate

The examination will no longer be offered as of summer semester 2021.

Prerequisites

None.

Recommendation

The course requires significant prior knowledge of Management Accounting, similar to the content of the courses MA 1 and 2, although completion of these particular courses is not a formal requirement.

Annotation

Lecture and examination will no longer be offered from summer semester 2021.

6.15 Course: Advanced Statistics [T-WIWI-103123]

Responsible:	Prof. Dr. Oliver Grothe
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101637 - Analytics and Statistics

Events								
WT 20/21	2550552	Grothe, Kaplan						
WT 20/21	2550553	Übung zu Statistik für Fortgeschrittene	2 SWS	Practice /	Grothe, Kaplan			
Exams								
WT 20/21	7900304_VOP	Advanced Statistics	Advanced Statistics					
WT 20/21	7900367	Advanced Statistics	Grothe					

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

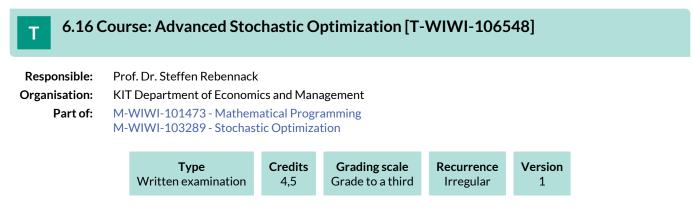
Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation. A bonus program can improve the grade by one grade level (i.e. by 0.3 or 0.4). The exam is offered every semester. Re-examinations are offered only for repeaters.

Prerequisites

None

Annotation


New course starting winter term 2015/2016

Below you will find excerpts from events related to this course:

Statistik für Fortgeschrittene 2550552, WS 20/21, 2 SWS, Open in study portal Lecture (V) Online

Literature Skript zur Vorlesung

Competence Certificate

The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every the semester.

Prerequisites

None.

6.17 Course: Advanced Topics in Economic Theory [T-WIWI-102609]

Responsible:	Prof. Dr. Kay Mitusch					
Organisation:	KIT Department of Economics and Management					
Part of:	M-WIWI-101406 - Network Economics M-WIWI-101500 - Microeconomic Theory M-WIWI-101502 - Economic Theory and its Application in Finance					

	Туре	Credits	Grading scale	Recurrence	Version	
Wr	itten examination	4,5	Grade to a third	Irregular	1	

Events								
ST 2021	2520527	Advanced Topics in Economic Theory	2 SWS	Lecture /	Mitusch, Brumm			
ST 2021	2520528	Übung zu Advanced Topics in Economic Theory	1 SWS	Practice / 🖥	Pegorari			

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (60min) (following §4(2), 1 of the examination regulation) at the end of the lecture period or at the beginning of the following semester.

Prerequisites

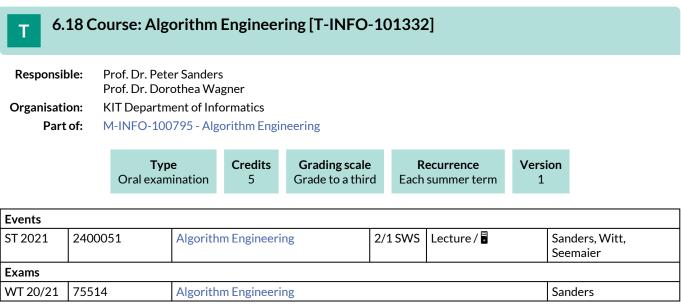
None

Recommendation

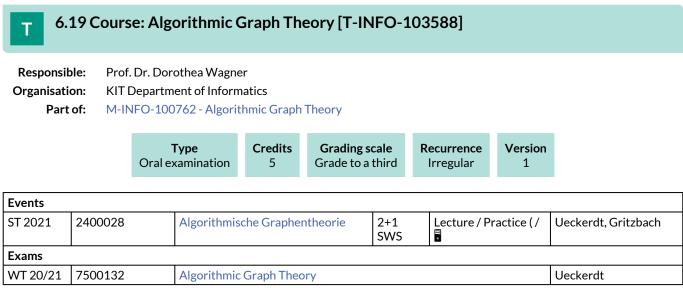
This course is designed for advanced Master students with a strong interest in economic theory and mathematical models. Bachelor students who would like to participate are free to do so, but should be aware that the level is much more advanced than in other courses of their curriculum.

Below you will find excerpts from events related to this course:

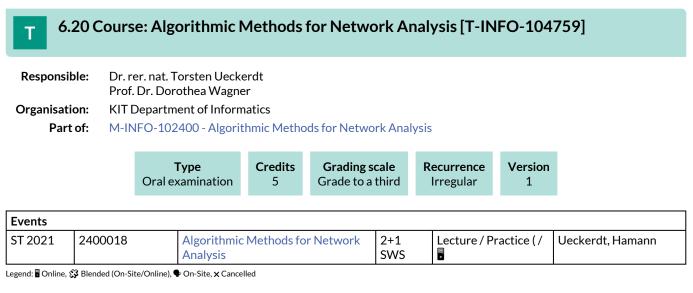
Advanced Topics in Economic Theory


2520527, SS 2021, 2 SWS, Language: English, Open in study portal

Lecture (V) Online


Literature

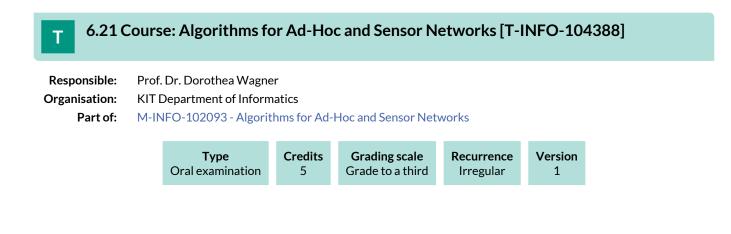
Die Veranstaltung wird in englischer Sprache angeboten:

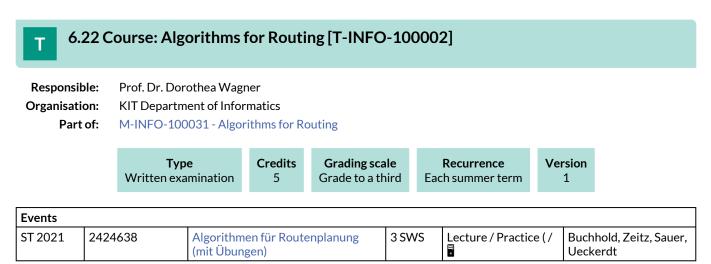

The course is based on the excellent textbook "Microeconomic Theory" (Chapters 1-5, 10, 13-20) by A.Mas-Colell, M.D.Whinston, and J.R.Green.

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

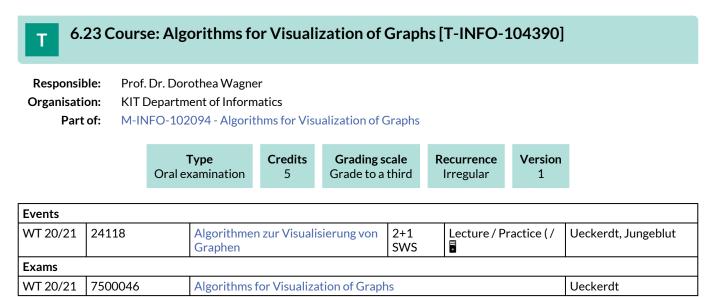
Legend: Dolline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

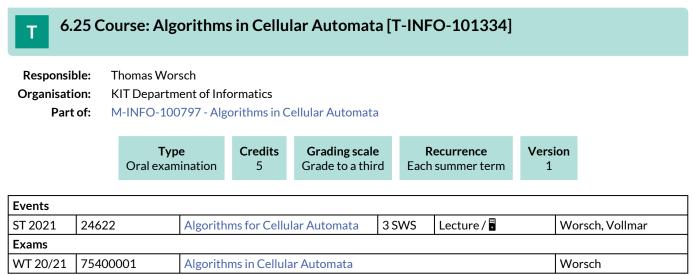


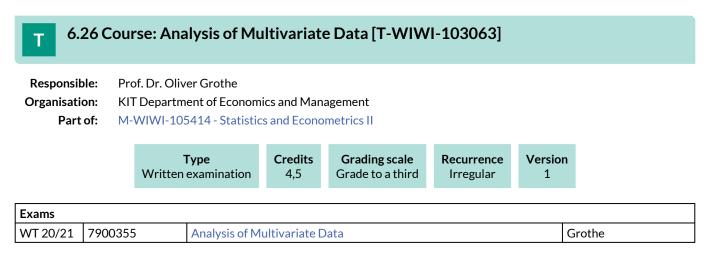

Algorithmic Methods for Network AnalysisLecture / Practice (VÜ)2400018, SS 2021, 2+1 SWS, Language: German, Open in study portalOnline

Content 150 h


Literature

Brandes, Erlebach: Network Analysis - Methodological Foundations. Springer, 2005. Newman: Networks. An Introduction. Oxford University Press, 2010.


Legend: Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled


Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.24 Course: Algorithms II [T-INFO-102020]										
Responsible: Prof. Dr. Hartmut Prautzsch Prof. Dr. Peter Sanders Prof. Dr. Dorothea Wagner										
Organisati	on:	KIT Departm	ent of Inforr	natics						
Part	of:	M-INFO-101	173 - Algori	thms II						
		Type Written examination		Credits 6	ts Grading scale Grade to a thir		Recurrence Each winter term		Ver	sion
Events										
WT 20/21	2407	79	Algorithms II		4 SW	/S Lecture /			Sanders, Heuer, Seemaier	
Exams						•				
WT 20/21	7500)245	245 Algorithms II							Sanders
ST 2021	7500	7500464 Algorithms II						Sanders		

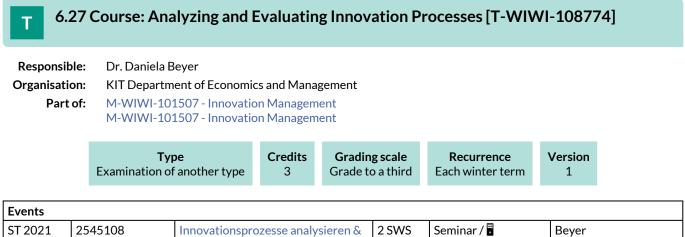
Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation. The exam is offered every semester. Re-examinations are offered only for repeaters.

Prerequisites


None

Recommendation

Attendance of the courses Statistics 1 [2600008] and Statistics 2 [2610020] is recommended.

Annotation

The lecture is not offered regularly. The courses planned for three years in advance can be found online.

ST 2021	2545108	Innovationsprozesse analysieren &	2 SWS	Seminar / 🖥
		evaluieren		

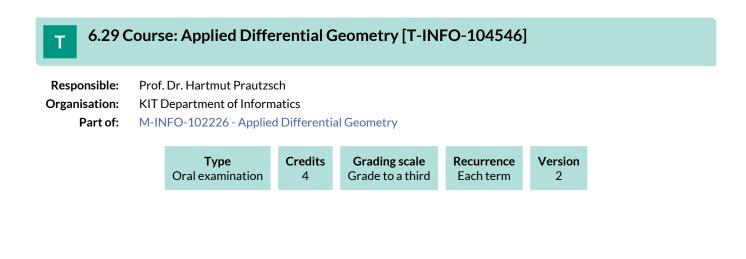
Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

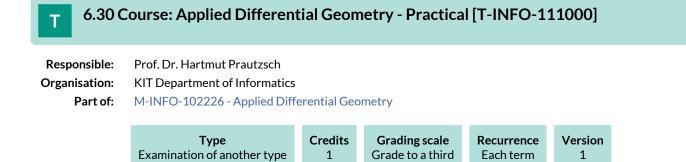
Competence Certificate

Non exam assessment (following §4(2) 3 of the examination regulation).

Innovation plan (exposé) (20%), Guided interviews/ quantitative survey (20%), presentation of results (20%), seminar paper (about 5 pages per person) (40%).

Prerequisites


None


Recommendation

Prior attendance of the course Innovation Management is recommended.

6.28 Course: Application Security Lab [T-INFO-106289] Т Dr. Willi Geiselmann **Responsible:** Prof. Dr. Jörn Müller-Quade Organisation: **KIT** Department of Informatics M-INFO-103166 - Application Security Lab Part of: Credits Grading scale Recurrence Version Type Examination of another type 4 Grade to a third Each winter term 1 **Events** WT 20/21 2400114 Application security lab 4 SWS Practical course / Hartung, Müller-Quade, Mechler, Wressnegger, Dörre ST 2021 2400114 Application security lab 4 SWS Practical course / Müller-Quade, Mechler, Dörre, Wressnegger, Noppel Exams WT 20/21 7500188 **Application Security Lab** Geiselmann, Müller-Quade

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.31 Course: Applied Econometrics [T-WIWI-103125] Т Prof. Dr. Melanie Schienle **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-101638 - Econometrics and Statistics I Credits Grading scale Version Туре Recurrence Written examination 4,5 Grade to a third Irregular 1 Exams WT 20/21 7900251 **Applied Econometrics** Krüger WT 20/21 7900280 **Applied Econometrics** Krüger

Competence Certificate

The assessment of this course is a written examination (90 min) according to §4(2), 1 of the examination regulation.

Prerequisites

None

Annotation

The course is not offered regularly.

6.32 Course: Artificial Intelligence in Service Systems [T-WIWI-108715]

Responsible:	Prof. Dr. Gerhard Satzger
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101448 - Service Management M-WIWI-101506 - Service Analytics M-WIWI-103117 - Data Science: Data-Driven Information Systems M-WIWI-104814 - Information Systems: Analytical and Interactive Systems

Type	Credits	Grading scale	Recurrence	Version
Written examination	4,5	Grade to a third	Each winter term	1

Events					
WT 20/21	2595650	Artificial Intelligence in Service Systems	2 SWS	Lecture /	Kühl, Vössing
Exams					
WT 20/21	7900303	Artificial Intelligence in Service Sys	stems (17.03	3.2021)	Satzger

Legend: 🖥 Online, 🗱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (60 min). Successful completion of the exercises is a prerequisite for admission to the written exam.

Prerequisites

None

Below you will find excerpts from events related to this course:

Artificial Intelligence in Service Systems

2595650, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

Artificial Intelligence (AI) and the application of machine learning is becoming more and more popular to solve relevant business challenges. However, it is not only important to be familiar with precise algorithms, but rather a general understanding of the necessary steps with a holistic view—from real-world challenge to successful deployment of an AI-based solution. As part of this course, we teach the complete lifecycle of an AI project with a focus on supervised machine learning challenges. We do so by also teaching the use of Python and the required packages like scikit-learn and tensorflow with exemplary data. We then take this knowledge to the more complex case of service systems with different entities (e.g., companies) who interact with each other and show possibilities on how to derive holistic insights. Two possibilities to do so are the use of meta and transfer machine learning, where we teach insights in their theory, design and application.

Students of this course will be able to understand and implement the complete lifecycle of a typical Artificial Intelligence use case with supervised machine learning. Furthermore, they understand the importance and the means of applying AI and Machine Learning within service systems, which allows multiple, independent entities to collaborate and derive insights. Students will be proficient with typical Python code for AI challenges.

Literature

- Baier, Lucas, Niklas Kühl, and Gerhard Satzger. "How to Cope with Change?-Preserving Validity of Predictive Services over Time." Proceedings of the 52nd Hawaii International Conference on System Sciences. 2019.
- Cawley, Gavin C., and Nicola LC Talbot. "On over-fitting in model selection and subsequent selection bias in performance evaluation." Journal of Machine Learning Research 11.Jul (2010): 2079-2107.
- Fromm, Hansjörg, Francois Habryn, and Gerhard Satzger, "Service analytics: Leveraging data across enterprise boundaries for competitive advantage," in Globalization of Professional Services, 2012, pp. 139–149.
- Gama, J, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, "A survey on concept drift adaptation," ACM Comput. Surv., vol. 46, no. 4, pp. 1–37, 2014.
- Hirt, Robin, Niklas Kühl, and Gerhard Satzger. "An end-to-end process model for supervised machine learning classification: from problem to deployment in information systems." Designing the Digital Transformation: DESRIST 2017 Research in Progress Proceedings of the 12th International Conference on Design Science Research in Information Systems and Technology. Karlsruhe, Germany. 30 May-1 Jun. Karlsruher Institut für Technologie (KIT), 2017.
- Hirt, Robin, and Niklas Kühl. "Cognition in the Era of Smart Service Systems: Inter-organizational Analytics through Meta and Transfer Learning." (2018).
- Hirt, Robin, Niklas Kühl, and Gerhard Satzger. "Cognitive computing for customer profiling: meta classification for gender prediction." Electronic Markets 29.1 (2019): 93-106.
- Kühl, N., Goutier, M., Hirt, R., & Satzger, G. (2019, January). Machine learning in artificial intelligence: Towards a common understanding. In Proceedings of the 52nd Hawaii International Conference on System Sciences.
- Kühl, Niklas, Marius Mühlthaler, and Marc Goutier. "Supporting customer-oriented marketing with artificial intelligence: automatically quantifying customer needs from social media." Electronic Markets (2019): 1-17
- Martin, Dominik, Robin Hirt, and Niklas K
 ühl. "Service Systems, Smart Service Systems and Cyber-Physical Systems— What's the difference? Towards a Unified Terminology." (2019).
- Müller, Vincent C., and Nick Bostrom. "Future progress in artificial intelligence: A survey of expert opinion." Fundamental issues of artificial intelligence. Springer, Cham, 2016. 555-572.
- Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." IEEE Transactions on knowledge and data engineering 22.10 (2009): 1345-1359.

6.33 Course: Artificial Intelligence in Service Systems - Applications in Computer Vision [T-WIWI-111219]

Responsible:	Prof. Dr. Gerhard Satzger
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101448 - Service Management M-WIWI-101506 - Service Analytics M-WIWI-103117 - Data Science: Data-Driven Information Systems M-WIWI-104814 - Information Systems: Analytical and Interactive Systems M-WIWI-105661 - Data Science: Intelligent, Adaptive, and Learning Information Services

Туре	Credits	Grading scale	Recurrence	Version
Examination of anot	her type 4,5	Grade to a third	Each summer term	1

Events				
ST 2021	Artificial Intelligence in Service Systems - Applications in Computer Vision	2 SWS	Lecture / 🖥	Satzger, Schmitz

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment.

Annotation

This course is admission restricted (see http://dsi.iism.kit.edu).

The course replaces "Service Analytics A" as of summer semester 2021.

Below you will find excerpts from events related to this course:

Artificial Intelligence in Service Systems - Applications in Computer Vision 2595501, SS 2021, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

---We renamed this course from "Service Analytics A" to "Artificial Intelligence in Service Systems - Applications in Computer Vision ---

Learning objectives

This course teaches students how to apply machine learning concepts to develop predictive models that form the basis of many innovative service offerings and business models today. Using a selected use case each term, students learn the foundations of selected algorithms and development frameworks and apply them to build a functioning prototype of an analytics-based service. Students will become proficient in writing code in Python to implement a data science use case over the course period.

Description

Data-driven services have become a key differentiator for many companies. Their development is based on the increasing availability of structured and unstructured data and their analysis through methods from data science and machine learning. Examples comprise highly innovative service offerings based on technologies such as natural language processing, computer vision or reinforcement learning.

Using a selected use case, this lecture will teach students how to develop analytics-based services in an applied setting. We teach the theoretical foundations of selected machine learning algorithms (e.g., convolutional neural networks) and development concepts (e.g., developing modeling, training, inference pipelines) and teach how to apply these concepts to build a functioning prototype of an analytics-based service (e.g., inference running on a device). During the course, students will work in small groups to apply the learned concepts in the programming language Python using packages such as Keras, Tensorflow or Scikit-Learn.

Recommendations

The course is aimed at students in the Master's program with basic knowledge in statistics and applied programming in Python. Knowledge from the lecture Artificial Intelligence in Service Systems may be beneficial.

Additional information

Due to the practical group sessions in the course, the number of participants is limited. The offiicial application period in the WiWi portal is over. However, there is a limited number of remaining spaces. In case you are motivated to participate and have previous experience in the fields of Python Programming and Machine Learning please send a mail to jannis.walk∂kit.edu until Friday, 9th of April 2021.

Your mail has to contain:

- A short letter of motivation, ideally (but not necessarily) with reference to previous experience in programming and data science (maximum one page)

- Transcript of records (for Bachelor and Master if available)

Organizational issues

Blockveranstaltung, Termine werden bekannt gegeben

Literature

- Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. *The elements of statistical learning*. Vol. 1. No. 10. New York: Springer series in statistics, 2001.
- Russell, S., & Norvig, P. (2002). Artificial intelligence: a modern approach.
- Goldstein, E. B. (2009). Sensation and perception. 8th. Belmont: Wadsworth, Cengage Learning, 496(3).
- Gonzalez, Rafael C., Woods, Richard E. (2018). Digital Image Processing. 4th Pearson India
- Szeliski, R. (2010). Computer vision: algorithms and applications. Springer Science & Business Media.
- Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition(pp. 779-788).
- Sermanet, P., Chintala, S., & LeCun, Y. (2012, November). Convolutional neural networks applied to house numbers digit classification. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)(pp. 3288-3291). IEEE.
- Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems(pp. 91-99).
- Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition(pp. 580-587).
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems(pp. 1097-1105).

6.34 Course: Asset Pricing [T-WIWI-102647]

Responsible:	Prof. Dr. Martin Ruckes Prof. Dr. Marliese Uhrig-Homburg
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101480 - Finance 3 M-WIWI-101482 - Finance 1 M-WIWI-101483 - Finance 2 M-WIWI-101502 - Economic Theory and its Application in Finance

Туре	Credits	Grading scale	Recurrence	Version	
Written examination	4,5	Grade to a third	Each summer term	2	

Events					
ST 2021	2530555	Asset Pricing	2 SWS	Lecture /	Uhrig-Homburg
ST 2021	2530556	Übung zu Asset Pricing	1 SWS	Practice /	Uhrig-Homburg, Reichenbacher
Exams					
WT 20/21	7900056	Asset Pricing			Uhrig-Homburg

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 60minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Recommendation

We strongly recommend knowledge of the basic topics in investments (bachelor course), which will be necessary to be able to follow the course.

Below you will find excerpts from events related to this course:

Asset Pricing

2530555, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Organizational issues

Veranstaltungskonzept umfasst vollständige Aufzeichnungen von Vorlesung und Übung. Ergänzend bieten wir zweiwöchig freiwillige Live-Fragerunden zum fachlichen und organisatorischen Austausch an.

Literature Basisliteratur

• Asset pricing / Cochrane, J.H. - Rev. ed., Princeton Univ. Press, 2005.

Zur Wiederholung/Vertiefung

- Investments and Portfolio Management / Bodie, Z., Kane, A., Marcus, A.J. 9. ed., McGraw-Hill, 2011.
- The econometrics of financial markets / Campbell, J.Y., Lo, A.W., MacKinlay, A.C. 2. printing, with corrections, Princeton Univ. Press, 1997.

6.35 Course: Auction Theory [T-WIWI-102613] Т Prof. Dr. Karl-Martin Ehrhart **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-101446 - Market Engineering M-WIWI-101453 - Applied Strategic Decisions M-WIWI-101500 - Microeconomic Theory Credits **Grading scale** Recurrence Version Туре Grade to a third Each winter term Written examination 4,5 1 **Events** WT 20/21 2520408 Auktionstheorie 2 SWS Lecture / Ehrhart WT 20/21 2520409 Übungen zu Auktionstheorie 1 SWS Practice / Ehrhart Exams

WT 20/21 7900347 Auction Theory	Ehrhart

Legend: 🖥 Online, 🗱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

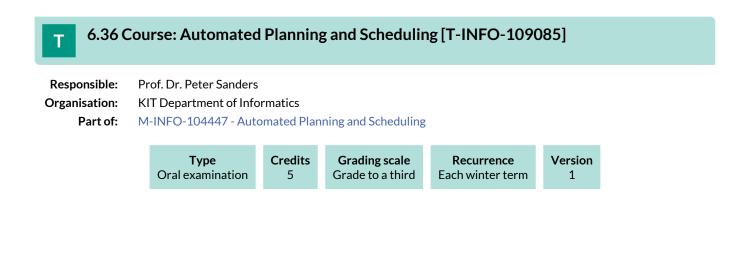
The assessment of this course is a written examination (following 4(2), 1 SPO) of 60 mins.

The exam is offered each semester.

Prerequisites None

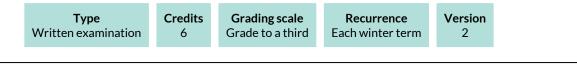
NULLE

Below you will find excerpts from events related to this course:


Auktionstheorie

2520408, WS 20/21, 2 SWS, Open in study portal

Literature


- Ehrhart, K.-M. und S. Seifert: Auktionstheorie, Skript zur Vorlesung, KIT, 2011
- Krishna, V.: Auction Theory, Academic Press, Second Edition, 2010
- Milgrom, P.: Putting Auction Theory to Work, Cambridge University Press, 2004
- Ausubel, L.M. und P. Cramton: Demand Reduction and Inefficiency in Multi-Unit Auctions, University of Maryland, 1999

Lecture (V) Online

6.37 Course: Automated Visual Inspection and Image Processing [T-INFO-101363]

Responsible:Prof. Dr.-Ing. Jürgen BeyererOrganisation:KIT Department of InformaticsPart of:M-INFO-100826 - Automated Visual Inspection and Image Processing

Events					
WT 20/21	24169	Automated Visual Inspection and Image Processing	4 SWS	Lecture / 🖥	Beyerer, Zander, Fischer
Exams					
WT 20/21	7500008	Automated Visual Inspection and Im	age Proces	ssing	Beyerer
ST 2021	7500003	Automated Visual Inspection and Im	age Proces	ssing	Beyerer
-	<u>^</u>				

Legend: 🖥 Online, 🗱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

|--|

Automated Visual Inspection and Image Processing

24169, WS 20/21, 4 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

Topics covered:

- sensors and concepts for image acquisition
- light and colour
- image signals (system theory, Fourier transformation, stochastic processes)
- excursion to wave optics
- pre-processing and image enhancement
- image restoration
- segmentation
- morphological image processing
- texture analysis
- detection
- image pyramids, multi scale analysis and wavelet-transform

Educational objective:

- Students have a sound knowledge regarding the basic concepts and methods of image processing (pre-processing and image enhancement, image restoration, image segmentation, morphological filtering, texture analysis, detection, image pyramids, multi-scale analysis and the wavelet transform)
- Students are in the position to work out and to evaluate solution concepts for problems of automated visual inspection
- Students have a sound knowledge of the different sensors and methods for the acquisition of image data as well as of the relevant optical principles
- Students know different concepts to describe image data and they know the essential system theoretical concepts and interrelations

Organizational issues

Die Erfolgskontrolle wird in der Modulbeschreibung erläutert.

Empfehlungen:

Grundkenntnisse der Optik und der Signalverarbeitung sind hilfreich.

Literature

Weiterführende Literatur

- R. C. Gonzalez und R. E. Woods, Digital Image Processing, Prentice-Hall, Englewood Cliffs, New Jersey, 2002

- B. Jähne, Digitale Bildverarbeitung, Springer, Berlin, 2002

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Depending on the further pandemic development in the summer semester 2021 the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1.5 h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites

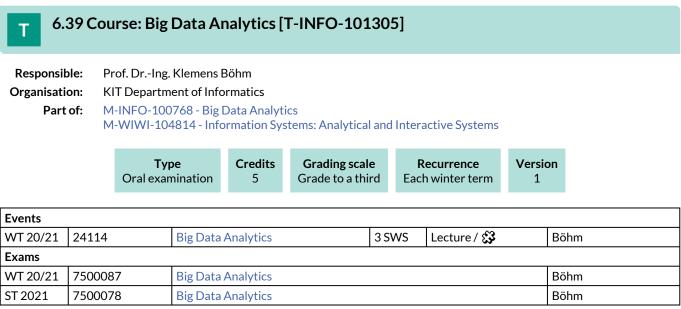
None

Recommendation

Knowledge of the collection of public revenues is assumed. Therefore it is recommended to attend the course "Öffentliche Einnahmen" beforehand.

Below you will find excerpts from events related to this course:

V	Basics of German Company Tax Law and Tax Planning	Lecture (V)
V	2560134, WS 20/21, 3 SWS, Language: German, Open in study portal	Online

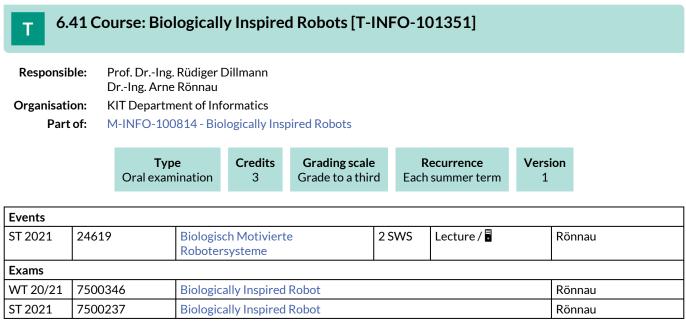

Content Workload:

The total workload for this course is approximately 135.0 hours. For further information see German version.

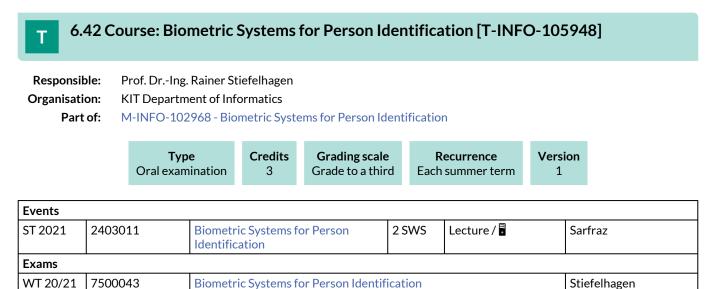
Organizational issues

Montag 17:30:00-19:00 Uhr per MS-Teams-Livestream

(Achtung: In der ersten Vorlesungswoche beginnt die Veranstaltung um 18:00 Uhr)


Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.40 Course: Big Data Analytics 2 [T-INFO-105742] Т **Responsible:** Prof. Dr.-Ing. Klemens Böhm Organisation: **KIT** Department of Informatics Part of: M-INFO-102773 - Big Data Analytics 2 Credits **Grading scale** Recurrence Version Туре Oral examination 3 Grade to a third Irregular 1 Events ST 2021 2400042 **Big Data Analytics 2** 2 SWS Lecture / 🖥 Fouché Exams WT 20/21 7500190 **Big Data Analytics 2** Böhm ST 2021 7500092 **Big Data Analytics 2** Böhm


Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

none

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

VVI 20/21	7300043	biometric systems for Person dentification
ST 2021	7500025	Biometric Systems for Person Identification

Legend: 🖥 Online, 🗱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

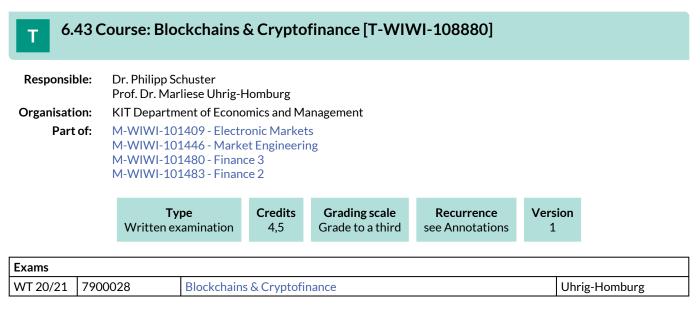
Below you will find excerpts from events related to this course:

Biometric Systems for Person Identification

2403011, SS 2021, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Stiefelhagen


Content

Biometrics deals with the science of recognizing and identifying humans based on their biometrics traits, such as finger prints, face, iris, gait etc. With the increasing demands put on security and surveillance e.g. safer access control, border control/passports and identifying criminals /law enforcement, biometrics becomes more and more essential and technologies are being developed to solve many issues in this demanding area of research. In this course, the students will learn the fundamental concepts of underlying biometrics technologies, understanding of various techniques for different topics/technologies used in biometrics.

The topics include

- Introduction: Biometrics acquisitions and image processing, basic introduction to the area of computer vision/machine learning applied to biometrics

- Biometrics system: requirements, enrollment, identification/verification, performance metrics
- Biometrics technologies: Overview of different biometrics technologies
- Finger print recognition: image enhancement, state-of-the art techniques, challenges
- Iris recognition: image acquisitions, feature extraction, state-of-the-art techniques, challenges
- Face recognition: introduction, current methods, applications
- Palm print recognition: current methods
- Gait recognition: emerging methods
- Multi-Biometrics: multiple modes of biometrics, fusion strategies
- Risk analysis: attacks, liveness detection, fraud prevention

Competence Certificate

Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 60minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Recommendation None

Annotation

The lecture is currently not offered.

T 6.4	44 C	ourse: Bon	d Marke	ts [T-WIV	WI-11099	5]				
Responsible:Prof. Dr. Marliese Uhrig-HomburgOrganisation:KIT Department of Economics and ManagementPart of:M-WIWI-101480 - Finance 3 M-WIWI-101483 - Finance 2										
		Tyr Written exa		Credits 4,5	Grading sc Grade to a t		Recurrence Each winter term	Ver:		
Events										
WT 20/21	2530)560	Bond Markets			3 SWS Lecture / Practice (/		ce (/	Cölsch, Uhrig- Homburg	
Exams										
WT 20/21	7900292 Bond Markets Uhrig-Homburg				Uhrig-Homburg					

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 60minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Annotation

This course will be held in English.

Below you will find excerpts from events related to this course:

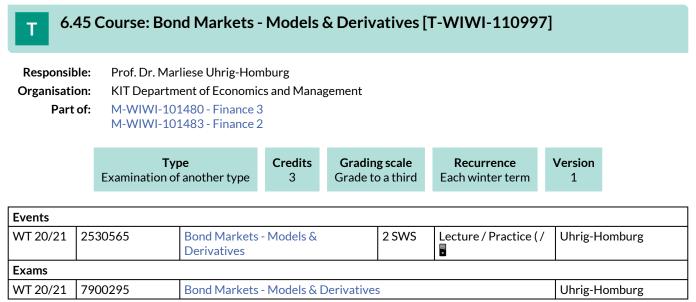
Bond Markets

2530560, WS 20/21, 3 SWS, Language: English, Open in study portal

Lecture / Practice (VÜ) Online

Content

The lecture "Bond Markets" deals with the national and international bond markets, which are an important source of financing for companies, as well as for the public sector. After an overview of the most important bond markets, different yield definitions are discussed. Based on this, the concept of the yield curve is presented. In addition, the theoretical and empirical relationships between ratings, default probabilities and spreads are analyzed. The focus will then be on questions regarding the valuation, measurement, management and control of credit risks.


The total workload for this course is approximately 135 hours (4.5 credits).

The assessment consists of a written exam (75min.) (according to \$4(2), 1 SPO). A bonus can be earned through successful participation in the tutorial sessions. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one level (0.3 or 0.4). The examination is offered in each semester and can be repeated at any regular examination date.

Students deepen their knowledge of national and international bond markets. They gain knowledge of the traded instruments and their key figures for describing default risk such as ratings, default probabilities or credit spreads.

Organizational issues

Blockveranstaltung: Do 14:00-19:00 Uhr, Fr 9:45-17:15 Uhr 05./06.11., 19./20.11., 03./04.12.20

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of success consists in equal parts of a written thesis and an oral exam including a discussion of one's own work. The main examination is offered once a year, re-examinations every semester.

Recommendation

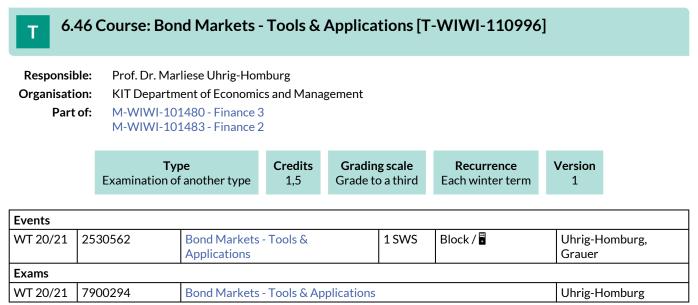
Knowledge of "Bond Markets" and "Derivatives" courses is very helpful.

Annotation

This course will be held in English.

Below you will find excerpts from events related to this course:

Bond Markets - Models & Derivatives


2530565, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture / Practice (VÜ) Online

Content

- **Competence Certificate:** The assessment of success consists in equal parts of a written thesis and an oral exam (according to §4(2), 3 SPO) including a discussion of one's own work. The main examination is offered once a year, re-examinations every semester.
- **Competence Goal:** Students deepen their knowledge of national and international bond markets. They are able to apply the knowledge they have gained about traded instruments and common valuation models for pricing derivative financial instruments.
- Prerequisites:
- **Content:** The lecture "Bond Markets Models & Derivatives" deepens the content of the lecture "Bond Markets". The modelling of the dynamics of yield curves and the management of credit risks forms the theoretical foundation for the valuation of interest rate and credit derivatives to be discussed. In this course, students deal intensively with selected topics and acquire the relevant knowledge on their own.
- Recommendation: Knowledge of "Bond Markets" and "Derivatives" courses is very helpful.
- Workload: The total workload for this course is approximately 90 hours (3.0 credits).

Organizational issues Blockveranstaltung freitags 9:45-17:15 Uhr, 15.01. und 22.01.21

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of an empirical case study with written elaboration and presentation. The main examination is offered once a year, re-examinations every semester.

Recommendation

Knowledge of the "Bond Markets" course is very helpful.

Annotation

This course will be held in English.

Below you will find excerpts from events related to this course:

Content

- **Competence Certificate:** The assessment consists of an empirical case study with written elaboration and presentation (according to \$4(2), 3 SPO). The main examination is offered once a year, re-examinations every semester.
- **Competence Goal:** The students apply various methods in practice within the framework of a project-related case study. They are able to deal with empirical data and analyze them in a targeted manner.
- **Content:** The course "Bond Markets Tools & Applications" includes a hands-on project in the field of national and international bond markets. Using empirical datasets, the students have to apply practical methods in order to analyze the data in a targeted manner.
- Recommendation: Knowledge of the "Bond Markets" course is very helpful.
- Workload: The total workload for this course is approximately 45 hours (1.5 credits).

Organizational issues

Blockveranstaltung am 10.12.20, Zeiten nach gesondertem Aushang Seminarraum 320 Geb. 09.21

6.47 Course: Business Data Analytics: Application and Tools [T-WIWI-109863]

Responsible:	Prof. Dr. Christof Weinhardt						
Organisation:	KIT Department of Economics and Management						
Part of:	M-WIWI-103117 - Data Science: Data-Driven Information Systems M-WIWI-103118 - Data Science: Data-Driven User Modeling M-WIWI-104812 - Information Systems: Engineering and Transformation M-WIWI-104814 - Information Systems: Analytical and Interactive Systems						

Туре	Credits	Grading scale	Recurrence	Version
Examination of another type	4,5	Grade to a third	Each summer term	2

Events					
ST 2021	2540466	Business Data Analytics: Application and Tools	2 SWS	Lecture /	Dann, Grote, Stoeckel
ST 2021	2540467	Excercise Business Data Analytics: Application and Tools	1 SWS	Practice / 🖥	Badewitz, Grote, Sterk

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Success is monitored through ongoing elaborations and presentations of tasks and a written exam (60 minutes) at the end of the lecture period. Successful participation in the excercises is a prerequisite for admission to the written examination. The scoring scheme for the overall evaluation will be announced at the beginning of the course.

Prerequisites

None

Recommendation

Knowledge of (object-oriented) programming and statistics is helpful.

Annotation

Course name until winter semester 2018/2019 "Applied Analytics with Open Source Tools" (T-WIWI-108438)

Below you will find excerpts from events related to this course:

Business Data Analytics: Application and Tools 2540466, SS 2021, 2 SWS, Language: German, Open in study portal Lecture (V) Online

Weinhardt

Weinhardt

6.48 Course: Business Data Strategy [T-WIWI-106187] **Responsible:** Prof. Dr. Christof Weinhardt **Organisation:** KIT Department of Economics and Management Part of: M-WIWI-103117 - Data Science: Data-Driven Information Systems Type Credits **Grading scale** Recurrence Version Written examination 4,5 Grade to a third Each winter term 1 **Events** WT 20/21 Lecture / 🗣 2540484 2 SWS Weinhardt, van **Business Data Strategy** Dinther WT 20/21 2540485 Weinhardt, Badewitz Übung zu Business Data Strategy 1 SWS Practice / Exams

Legend: Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

7900226

7900234

Competence Certificate

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation and an alternative exam assessment according to § 4 paragraph 2 Nr. 3 of the examination regulation. The grade is determined by 2/3 through the written exam and by 1/3 through the alternative exam assessment (e.g., presentation).

Prerequisites

WT 20/21

WT 20/21

None

Recommendation

Students should be familiar with basic concepts of business organisations, information systems, and programming. However, all material will be introduced, so no formal pre-conditions are applied.

Annotation

Limited number of participants.

Below you will find excerpts from events related to this course:

Business Data Strategy

2540484, WS 20/21, 2 SWS, Language: English, Open in study portal

Business data strategy

Business Data Strategy

Lecture (V) On-Site

Content

With new methods for capturing and using different types of data and industry's recognition that society's use of data is less than optimal, the need for comprehensive strategies is more important than ever before. Advances in cybersecurity and information sharing and the use of data in its raw form for decision making all add to the complexity of integrated processes, ownership, stewardship, and sharing. The life cycle of data in its entirety spans the infrastructure, system design, development, integration, and implementation of information-enabling solutions. This lecture focuses on teaching about these dynamics and tools to comprehend and manage them in organisation contexts. Given the increasing size and complexity of data, methods for the transformation and structured preparation are an important tool in the process of sense-making. Modern software solutions and programming languages provide frameworks for such tasks that form another part of this course ranging from conceptual systems modelling to data manipulation to automated generation of HTML reports and web-applications.

Organizational issues Application/Registration

Attendance will be limited to 20-25 participants. Application/registration is therefore preliminary. After the application deadline has passed, positions will be allocated, based on evaluation of the previous study records. Applications are accepted only through the Wiwi-Portal: https://portal.wiwi.kit.edu/ys/3871

Anmeldung

Die Teilnehmeranzahl ist begrenzt (ca. 20-25 Plätze). Eine Anmeldung erfolgt deshalb zunächst unter Vorbehalt. Nach Ablauf der Anmeldefrist werden die Plätze zur Teilnahme, nach Einsicht der Vorleistungen im Studium vergeben. Die Anmeldung/Bewerbung erfolgt ausschließlich über das Wiwi-Portal: https://portal.wiwi.kit.edu/ys/3871

6.49 Course: Business Dynamics [T-WIWI-102762] **Responsible:** Prof. Dr. Andreas Geyer-Schulz Dr Paul Glenn Organisation: KIT Department of Economics and Management Part of: M-WIWI-101409 - Electronic Markets M-WIWI-105661 - Data Science: Intelligent, Adaptive, and Learning Information Services Credits **Grading scale** Recurrence Version Туре Grade to a third Each winter term Written examination 4,5 1 **Events** WT 20/21 2540531 **Business Dynamics** 2 SWS Lecture Geyer-Schulz, Glenn WT 20/21 2540532 1 SWS Practice **Exercise Business Dynamics** Geyer-Schulz, Glenn

Exams			
WT 20/21	7979777	Business Dynamics	Geyer-Schulz

Competence Certificate

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

None

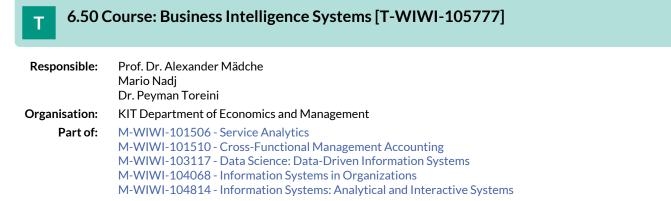
Recommendation

None

Below you will find excerpts from events related to this course:

Business Dynamics

2540531, WS 20/21, 2 SWS, Language: German, Open in study portal


Lecture (V)

Organizational issues

Blockveranstaltung freitags, samstags 8 -17:15 Uhr

Literature

John D. Sterman. Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill, 2000.

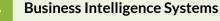
Туре	Credits	Grading scale	Recurrence	Version	
Examination of another type	4,5	Grade to a third	Each winter term	2	

Events					
WT 20/21	2540422	Business Intelligence Systems	3 SWS	Lecture / 🗣	Mädche
Exams					
WT 20/21	7900224	Business Intelligence Systems			Mädche
ST 2021	7900149	Business Intelligence Systems			Mädche

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment. The assessment consists of a one-hour exam and the implementation of a Capstone project. Details will be announced at the beginning of the course.


Prerequisites

None

Recommendation

Basic knowledge on database systems is helpful.

Below you will find excerpts from events related to this course:

2540422, WS 20/21, 3 SWS, Language: English, Open in study portal

Lecture (V) On-Site

Content

In most modern enterprises, Business Intelligence & Analytics (BI&A) Systems represent a core enabler of decision-making in that they are supplying up-to-date and accurate information about all relevant aspects of a company's planning and operations: from stock levels to sales volumes, from process cycle times to key indicators of corporate performance. Modern BI&A systems leverage beyond reporting and dashboards also advanced analytical functions. Thus, today they also play a major role in enabling data-driven products and services. The aim of this course is to introduce theoretical foundations, concepts, tools, and current practice of BI&A Systems from a managerial and technical perspective.

The course is complemented with an engineering capstone project, where students work in a team with real-world use cases and data in order to create running Business intelligence & Analytics system prototypes.

Learning objectives

- Understand the theoretical foundations of key Business Intelligence & Analytics concepts supporting decision-making
- Explore key capabilities of state-of-the-art Business Intelligence & Analytics Systems
- Learn how to successfully implement and run Business Intelligence & Analytics Systems from multiple perspectives, e.g. architecture, data management, consumption, analytics
- Get hands-on experience by working with Business Intelligence & Analytics Systems with real-world use cases and data

Prerequisites

This course is limited to a capacity of 50 places. The capacity limitation is due to the attractive format of the accompanying engineering capstone project. Strong analytic abilities and profound skills in SQL as wells as Python and/or R are required. Students have to apply with their CV and transcript of records.

Literature

- Turban, E., Aronson, J., Liang T.-P., Sharda, R. 2008. "Decision Support and Business Intelligence Systems".
- Watson, H. J. 2014. "Tutorial: Big Data Analytics: Concepts, Technologies, and Applications," Communications of the Association for Information Systems (34), p. 24.
- Arnott, D., and Pervan, G. 2014. "A critical analysis of decision support systems research revisited: The rise of design science," Journal of Information Technology (29:4), Nature Publishing Group, pp. 269–293 (doi: 10.1057/jit.2014.16).
- Carlo, V. (2009). "Business intelligence: data mining and optimization for decision making". Editorial John Wiley and Sons, 308-317.
- Chen, H., Chiang, R. H. L, and Storey, V. C. 2012. "Business Intelligence and Analytics: From Big Data to Big Impact," MIS Quarterly (36:4), pp. 1165-1188.
- Davenport, T. 2014. Big Data @ Work, Boston, MA: Harvard Business Review.
- Economist Intelligence Unit. 2015 "Big data evolution: Forging new corporate capabilities for the long term"
- Power, D. J. 2008. "Decision Support Systems: A Historical Overview," Handbook on Decision Support Systems, pp. 121–140 (doi: 10.1007/978-3-540-48713-5_7).
- Sharma, R., Mithras, S., and Kankanhalli, A. 2014. "Transforming decision-making processes: a research agenda for understanding the impact of business analytics on organisations," European Journal of Information Systems (23:4), pp. 433-441.
- Silver, M. S. 1991. "Decisional Guidance for Computer-Based Decision Support," MIS Quarterly (15:1), pp. 105-122.

Further literature will be made available in the lecture.

6.51 Course: Business Models in the Internet: Planning and Implementation [T-WIWI-102639]

Responsible Organisation Part o	n: KIT Departm of: M-WIWI-10	Prof. Dr. Christof Weinhardt KIT Department of Economics and Management M-WIWI-101410 - Business & Service Engineering								
	M-WIWI-101488 - Entrepreneurship (EnTechnon) M-WIWI-102806 - Service Innovation, Design & Engineering M-WIWI-104813 - Information Systems: Internet-based Markets and Services									
	Typ Examination of		Credits 4,5	Grading Grade to		Recurrence Each summer term	Version 2			
Events										
ST 2021	2540456	Internet Busi	siness Models		2 SWS	Lecture /	Huber			
CT 2021	2540457	2457 – Übungen zu Ceechöftensedelle im			1 514/5	Dractico /	Dichtor Hul	hor Eag		

ST 2021	2540456	Internet Business Models	2 SWS	Lecture / 🖥	Huber
ST 2021	2540457	Übungen zu Geschäftsmodelle im Internet: Planung und Umsetzung	1 SWS	Practice / 🖥	Richter, Huber, Fegert

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Please note that in the summer semester 2020 the exam will only be offered to students who have completed the semester performance but have not yet taken the exam. From summer semester 2021 the exam will be offered again regularly.

Success is monitored through ongoing elaborations and presentations of tasks and a written exam (60 minutes) at the end of the lecture period. The scoring scheme for the overall evaluation will be announced at the beginning of the course.

Successful participation in the excercises is a prerequisite for admission to the written examination.

Prerequisites

None

Recommendation

None

Annotation

Please note that the lecture will not be offered in summer semester 2020 due to the research semester of Prof. Weinhardt.

Below you will find excerpts from events related to this course:

Internet Business Models

2540456, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Literature

Wird in der Vorlesung bekannt gegeben.

6.52 Course: Business Planning [T-WIWI-102865]

Responsible:
Organisation:
Part of:

le: Prof. Dr. Orestis Terzidis

KIT Department of Economics and Management

M-WIWI-101488 - Entrepreneurship (EnTechnon) M-WIWI-101488 - Entrepreneurship (EnTechnon)

Type	Credits	Grading scale	Recurrence	Version	
Examination of another type	3	Grade to a third	Each term	1	

Events					
WT 20/21	2545007	Business Planning for Founders (ENTECH)	2 SWS	Seminar / 🖥	Wohlfeil, Bauman, Terzidis
ST 2021	2545007	Business Planning for Founders	2 SWS	Seminar / 🖥	Kleinn, Ntagiakou, Terzidis
ST 2021	2545109	Business Planning for Founders in the field of IT-Security (KASTEL)	2 SWS	Seminar / 🖥	Ntagiakou, Terzidis
Exams					
WT 20/21	7900023	Business Planning for Founders	Business Planning for Founders		
WT 20/21	7900155	Business Planning for Founders in th	Business Planning for Founders in the field of IT-Security		
ST 2021	7900234	Business Planning for Founders			Terzidis
ST 2021	7900236	Business Planning for Founders in the field of IT-Security			Terzidis

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Business Planning for Founders (ENTECH)

2545007, WS 20/21, 2 SWS, Language: English, Open in study portal

Seminar (S) Online

Content

The seminar introduces students to the basic concepts of business planning for entrepreneurs. On the one hand, this involves concepts for the concretisation of business ideas (business modelling, market potential assessment, resource planning, etc.) and on the other hand, the preparation of an implementable business plan (with or without VC financing). In the course of the seminar, the students are familiarized with methods of further developing patents and business ideas into a more concrete business plan and formulating them in a business plan.

Business Planning for Founders

2545007, SS 2021, 2 SWS, Language: English, Open in study portal

Seminar (S) Online

Content

The seminar introduces students to the basic concepts of business planning for entrepreneurs. On the one hand, this involves concepts for the concretisation of business ideas (business modelling, market potential assessment, resource planning, etc.) and on the other hand, the preparation of an implementable business plan (with or without VC financing). In the course of the seminar, the students are familiarized with methods of further developing patents and business ideas into a more concrete business plan and formulating them in a business plan.

Organizational issues

Block am 26.04., 03.05., 10.05. jeweils 9-17 Uhr

Business Planning for Founders in the field of IT-Security (KASTEL)

2545109, SS 2021, 2 SWS, Language: German/English, Open in study portal

Seminar (S) Online

Content

In order to identify opportunities, the participants should identify fields for entrepreneurial opportunities in a systematic web research. For this purpose, Systematic Mapping procedures will be adapted to the research of general web sources and applied to the research of interesting fields in the area of cyber security.

Information about the seminar:

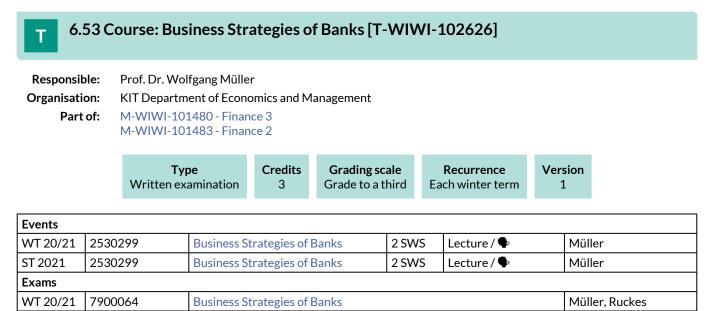
In the seminar you will work in groups of max. 4 persons. Group applications are welcome but not a prerequisite for participation. Some of the seminars will be held in English.

The focus of the seminar is Opportunity Recognition in the field of IT-Security, followed by ideation sessions with the aim to find possible applications for technologies that are developed at the KIT. Prototyping and also Pitching are part of the seminar.

Target group:

Master Students

Information on the allocation of seminar places:


The registration for the seminar is possible in the Wiwi portal in the period from 11.09.2019 to 05.10.2019 at 23:55 clock. To apply for the seminar, please send us a letter of motivation (max. 5 sentences).

Seminar contents:

- To identify opportunities, the participants should identify fields for entrepreneurial opportunities in a systematic web research. For this purpose, Systematic Mapping procedures will be adapted to the research of general web sources and applied to the research of interesting fields in the area of cyber security.
- All information will be discussed with experts on the second seminar day. The aim of the first two sessions is to develop a systematic segmentation of market needs.
- After the teams have been formed, the workshop "Technology Application Selection (TAS)" follows. This is a framework
 developed by EnTechnon that will help the teams to develop concrete business ideas based on given technologies. The
 three steps of the TAS will be the content of the third and fourth seminar days. Participants will generate ideas and then based on specific criteria that we will provide choose an idea on which they will build their value proposition.
- The final session before the final day will deal with prototyping and validation. This will use rapid prototyping and validation methods from the design thinking environment.
- On the last day before their final presentations the participants learn how to present the idea in a short presentation (pitch) to an interested audience.

Organizational issues

Blockveranstaltung im Rahmen des KASTEL Projekts am 12.05., 09.06., 23.06.

Legend: 🖥 Online, 🔀 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

See German version.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Business Strategies of Banks

2530299, WS 20/21, 2 SWS, Language: German, Open in study portal

Content

The management of a bank is in charge of the determination and implementation of business policy - taking into account all relevant endogenous and exogenous factors - that assures the bank's success in the long run. In this context, there exists a large body of banking models and theories which are helpful in describing the success and risk of a bank. This course is meant to be the bridging of banking theory and practical implementation. In the course of the lectures students will learn to take on the bank management's perspective.

The first chapter deals with the development of the banking sector. Making use of appropriate assumptions, a banking policy is developed in the second chapter. The design of bank services (ch. 3) and the adequate marketing plan (ch. 4) are then built on this framework. The operational business of banks must be guided by appropriate risk and earnings management (ch. 5 and 6), which are part of the overall (global) bank management (ch. 7). Chapter eight, at last, deals with the requirements and demands of bank supervision as they have significant impact on a bank's corporate policy.

Learning outcomes:

Students are are in a position to discuss the principles of commercial banking. They are familiar with fundamental concepts of bank management and are able to apply them.

Workload:

The total workload for this course is approximately 90 hours. For further information see the German version.

Literature

Weiterführende Literatur:

- Ein Skript wird im Verlauf der Veranstaltung kapitelweise ausgeteilt.
- Hartmann-Wendels, Thomas; Pfingsten, Andreas; Weber, Martin; 2014, Bankbetriebslehre, 6. Auflage, Springer

Lecture (V) On-Site

Business Strategies of Banks

2530299, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Literature Weiterführende Literatur:

- Ein Skript wird im Verlauf der Veranstaltung kapitelweise ausgeteilt.
- Hartmann-Wendels, Thomas; Pfingsten, Andreas; Weber, Martin; 2014, Bankbetriebslehre, 6. Auflage, Springer

6.54 Course: Case Studies Seminar: Innovation Management [T-WIWI-102852] Prof. Dr. Marion Weissenberger-Eibl **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon) M-WIWI-101507 - Innovation Management M-WIWI-101507 - Innovation Management Credits **Grading scale** Recurrence Version Type Grade to a third Examination of another type 3 Each winter term 1 **Events** WT 20/21 2545105 Case studies seminar: Innovation 2 SWS Seminar / 🕄 Weissenberger-Eibl management Exams WT 20/21 7900237 **Case Studies Seminar: Innovation Management** Weissenberger-Eibl

Legend: Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessments (§4(2), 3 SPO).

Prerequisites

None

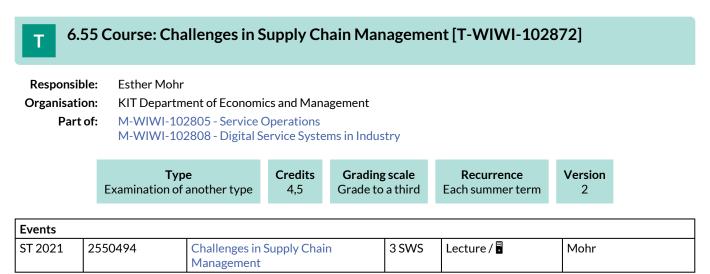
Recommendation

Prior attendance of the course Innovation Management is recommended.

Below you will find excerpts from events related to this course:

Case studies seminar: Innovation management

2545105, WS 20/21, 2 SWS, Language: German, Open in study portal


Seminar (S) Blended (On-Site/Online)

Content

The objective of the seminar is to master selected concepts and methods of innovation management and then to apply these practically. Working in groups, the students apply the described concepts and methods of innovation management to a case study from the automotive industry to answer specific questions. Accordingly, the block seminar involves a switch from input to the application of this input. At the end, the results of the group work are presented in the form of a seminar paper and discussed by the whole course. A short introduction to presentation techniques is planned to help students prepare the seminar papers.

Literature

Werden in der ersten Veranstaltung bekannt gegeben.

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written paper and an oral exam of ca. 30-40 min.

Prerequisites

None

Recommendation

Basic knowledge as conveyed in the module "Introduction to Operations Research" is assumed.

Annotation

The number of course participants is limited to 12 participants due to joint work in BASF project teams. Due to these capacity restrictions, registration before course start is required. For further information see the webpage of the course.

The course is offered irregularly. The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Challenges in Supply Chain Management	Lecture (V

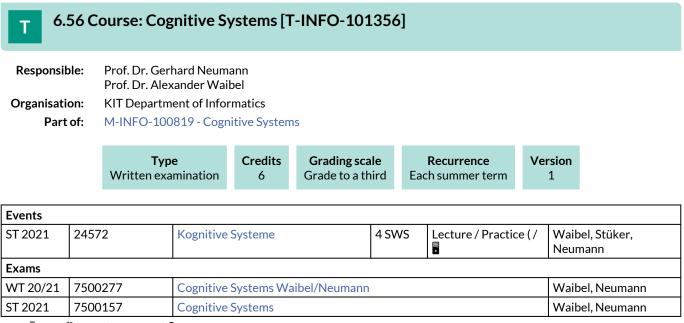
2550494, SS 2021, 3 SWS, Language: English, Open in study portal

Lecture (V) Online

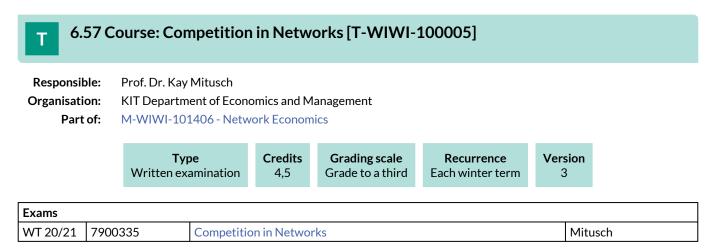
Content

The course consists of case studies of BASF which cover future challenges of supply chain management. Thus, the course aims at a case-study based presentation, critical evaluation and exemplary discussion of recent questions in supply chain management. The focus lies on future challenges and trends, also with regard to their applicability in practical cases (especially in the chemical industry).

The main part of the course is working on a project together with BASF in Ludwigshafen. The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the project topic.


This course will include working on cutting edge supply chain topics like Industry 4.0 / "Internet of Everything in production", supply chain analytics, risk management, procurement and production in SCM. The team essays / project reports will be linked to industry-related challenges as well as to upcoming theoretical concepts. The topics of the seminar will be announced at the beginning of the term in a preliminary meeting.

Organizational issues


Blockveranstaltung, Termine werden bekannt gegeben

Literature

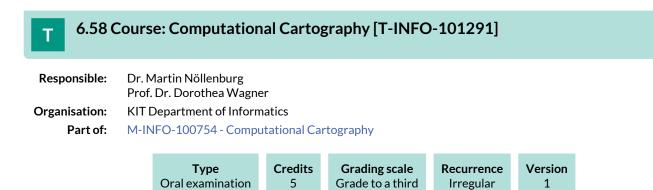
Wird in Abhängigkeit vom Thema in den Projektteams bekanntgegeben.

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Result of success is made by a 60 minutes written examination during the semester break (according to §4(2), 1 ERSC). Examination is offered every semester and can be retried at any regular examination date.

Prerequisites


None.

Recommendation

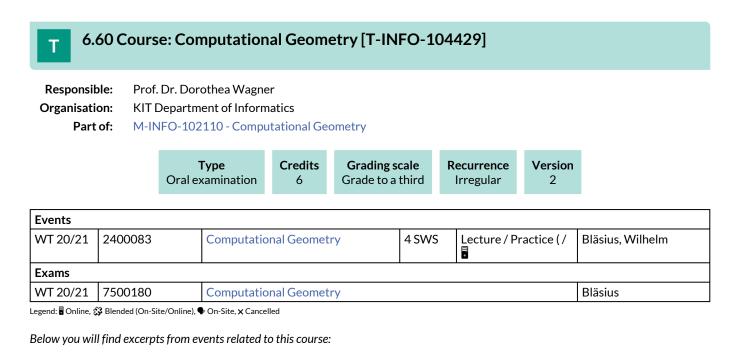
Basics of microeconomics obtained within the undergraduate programme (B.Sc) of economics are required.

Annotation

Due to the research semester of Prof. Mitusch the course will not be offered in the winter semester 20/21. An examination will be offered in each semester.

Irregular

1

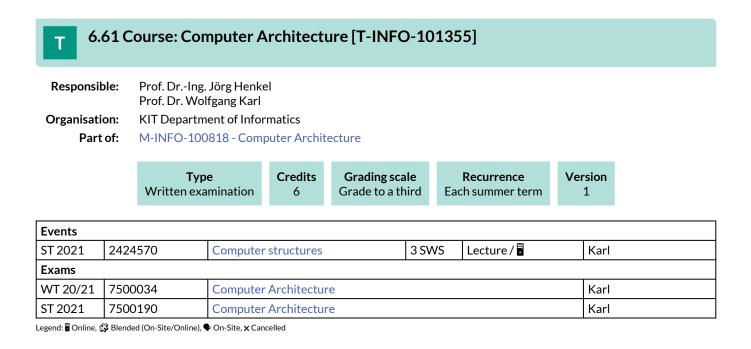

6.59 Course: Computational Complexity Theory, with a View Towards Cryptography [T-INFO-103014]

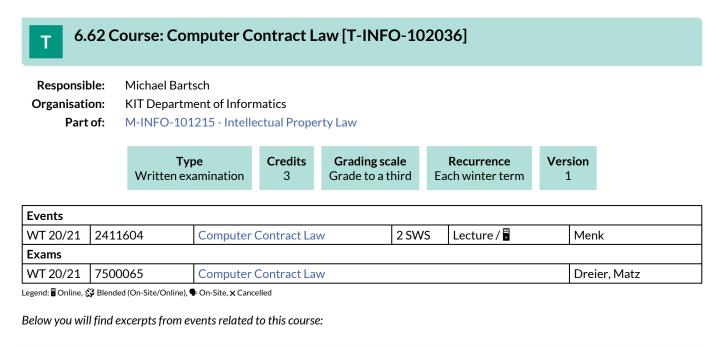
Grade to a third

Responsible:	Prof. Dr. Dennis Hofheinz Prof. Dr. Jörn Müller-Quade						
Organisation:	KIT Department of Informatics						
Part of:	M-INFO-101575 - Computational Complexity Theory, with a View Towards Cryptography						
		Type	Credits	Grading scale	Recurrence	Version	

6

Oral examination


Computational Geometry


2400083, WS 20/21, 4 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ) Online

Organizational issues

nur Masterstudiengang Informatik

Computer Contract Law

2411604, WS 20/21, 2 SWS, Language: German, Open in study portal

Content

The course deals with contracts from the following areas:

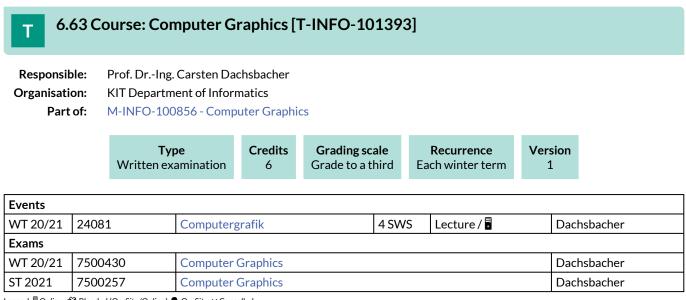
- Contracts of programming, licencing and maintaining software
- Contracts in the field of IT employment law
- IT projects and IT Outsourcing
- Internet Contracts

From these areas single contracts will be chosen and discussed (e.g. software maintenance, employment contract with a software engineer). Concerning the respective contract the technical features, the economic background and the subsumption in the national law of obligation (BGB-Schuldrecht) will be discussed. As a result different contractual clauses will be developed by the students. Afterwards typical contracts and conditions will be analysed with regard to their legitimacy as standard business terms (AGB). It is the aim to show the effects of the german law of standard business terms (AGB-Recht) and to point out that contracts are a means of drafting business concepts and market appearance.

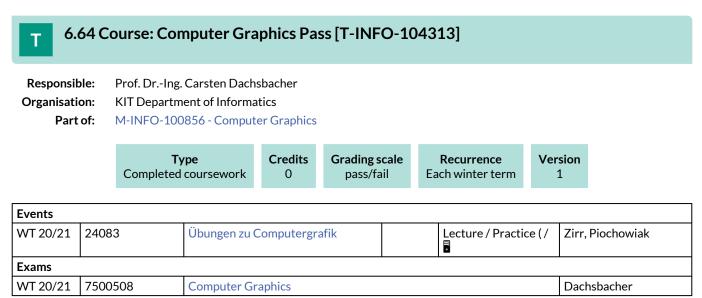
It is the aim of this course to provide students with knowledge in the area of contract formation and formulation in practice that builds upon the knowledge the students have already acquired concerning the legal protection of computer programs. Students shall understand how the legal rules depend upon, and interact with, the economic background and the technical features of the subject. The contract drafts shall be prepared by the students and will be corporately completed during the lecture. It is the aim of the course that students will be able to formulate contracts by themselves.

Organizational issues

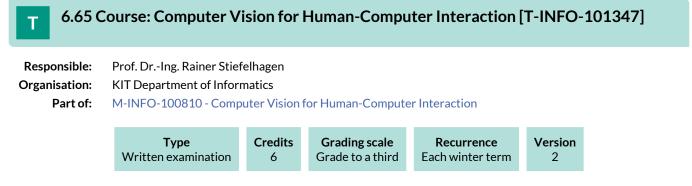
Die Veranstaltung findet im WS 2020/2021 in Form eines Online-Stream live statt.


Literature

- Langenfeld, Gerrit Vertragsgestaltung Verlag C.H.Beck, III. Aufl. 2004
- Heussen, Benno Handbuch Vertragsverhandlung und Vertragsmanagement Verlag C.H.Beck, II. Aufl. 2002
- Schneider, Jochen Handbuch des EDV-Rechts Verlag Dr. Otto Schmidt KG, III. Aufl. 2002


Weiterführende Literatur

Ergänzende Literatur wird in den Vorlesungsfolien angegeben.


Lecture (V) Online

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: Dolline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Events								
WT 20/21	24180	Computer Vision for Human- Computer Interaction	4 SWS	Lecture / 🖥	Stiefelhagen, Sarfraz			
WT 20/21	80260205	Computer Vision für MMI		Written exam	Stiefelhagen			
Exams								
WT 20/21	Stiefelhagen							
ST 2021	7500060	Computer Vision for Human-Con	omputer Vision for Human-Computer Interaction Stief					

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Computer Vision for Human-Computer Interaction

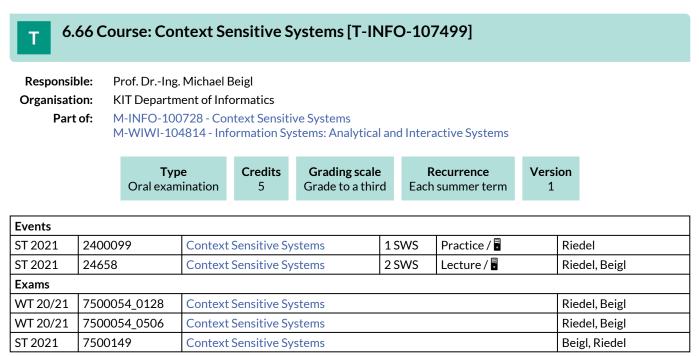
24180, WS 20/21, 4 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

In this lecture current projects of the field of image processing will be presented which deal with the visual perception of persons re. human-computer interaction.

In respect of the individual topics we will discuss various methods and algorithms, their pros and cons and state of the art:


- Face detection and localisation
- Facial expression
- Assessment of head turns and viewing direction
- Person tracking and localisation
- Articulated body tracking
- Gesture recognition
- Audio-visual speech recognition
- Multi-camera environments
- Tools and libraries

The student acquires a basic understanding of computer vision topics within the context of human-computer interaction and learns how to apply them.

Literature

Weiterführende Literatur

Wissenschaftliche Veröffentlichungen zum Thema, werden auf der VL-Website bereitgestellt.

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.67 Course: Convex Analysis [T-WIWI-102856] Т **Responsible:** Prof. Dr. Oliver Stein **Organisation:** KIT Department of Economics and Management Part of: M-WIWI-101473 - Mathematical Programming Credits Type **Grading scale** Recurrence Version Written examination 4,5 Grade to a third Irregular 1 **Events** ST 2021 2 SWS Lecture / Stein 2550120 **Konvexe Analysis**

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.

The examination is held in the semester of the lecture and in the following semester.

Prerequisites

None

Recommendation

It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Annotation

The lecture is offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).

Below you will find excerpts from events related to this course:

Konvexe Analysis

2550120, SS 2021, 2 SWS, Language: German, Open in study portal	Online
---	--------

Content

Convex Analysis deals with properties of convex functions and convex sets, amongst others with respect to the minimization of convex functions over convex sets. That the involved functions are not necessarily assumed to be differentiable allows a number a applications which are not covered by techniques from smooth optimization, e.g. approximation problems with respect to the Manhattan or maximum norms, classification problems or the theory of statistical estimates. The lecture develops along another, geometrically intuitive example, where a nonsmooth obstacle set is to be described by a single smooth convex constraint such that minimal and maximal distances to the obstacle can be computed. The lecture is structured as follows:

- Introduction to entropic smoothing and convexity
- Global error bounds
- Smoothness properties of convex functions
- The convex subdifferential
- Global Lipschitz continuity
- Descent directions and stationarity conditions

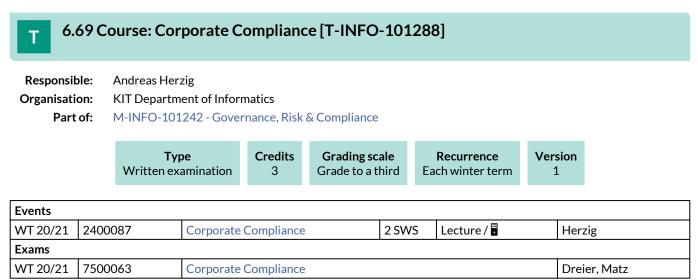
Remark:

Prior to the attendance of this lecture, it is strongly recommend to acquire basic knowledge on optimization problems in one of the lectures "Global Optimization I and II" and "Nonlinear Optimization I and II".

Learning objectives:

The student

- knows and understands the fundamentals of convex analysis,
- is able to choose, design and apply modern techniques of convex analysis in practice.


Lecture (V)

Literature

- J. Borwein, A. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.), Springer, 2006
- S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004
- O. Güler, Foundations of Optimization, Springer, 2010
- J.-B. Hiriart-Urruty, C. Lemarechal, Fundamentals of Convex Analysis, Springer, 2001
- B. Mordukhovich, N.M. Nam, An Easy Path to Convex Analysis and Applications, Morgan & Claypool Publishers, 2014
- R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970
- R.T. Rockafellar, R.J.B. Wets, Variational Analysis, Springer, Berlin, 1998

6.68 Course: Copyright [T-INFO-101308]									
Responsible:Prof. Dr. Thomas DreierOrganisation:KIT Department of InformaticsPart of:M-INFO-101215 - Intellectual Property Law									
			Type examination	Credits 3	Grading scale Grade to a third	Recurrence Each term	Version 1		
Events									
WT 20/21 24121 Copyright 2 SWS Lecture /						Dreier			
Exams									
WT 20/21 7500064 Copyright Dreier, Matz									

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Т

6.70 Course: Corporate Financial Policy [T-WIWI-102622]

Responsible:	Prof. Dr. Martin Ruckes
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101453 - Applied Strategic Decisions M-WIWI-101480 - Finance 3 M-WIWI-101483 - Finance 2 M-WIWI-101502 - Economic Theory and its Application in

Туре	Credits	Grading scale	Recurrence	Version	
Written examination	4,5	Grade to a third	Each summer term	1	

Finance

Events							
ST 2021	2530214	Corporate Financial Policy	2 SWS	Lecture /	Ruckes		
ST 2021	2530215	Übungen zu Corporate Finance Policy	1 SWS	Practice /	Ruckes, Hoang		
Exams							
WT 20/21	7900058	Corporate Financial Policy	Corporate Financial Policy				

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins.

The exam is offered each semester.

Prerequisites

None

Below you will find excerpts from events related to this course:

Corporate Financial Policy

2530214, SS 2021, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Literature Weiterführende Literatur

Tirole, J. (2006): The Theory of Corporate Finance. Princeton University Press.

6.71 Course: Corporate Risk Management [T-WIWI-109050] Т **Responsible:** Prof. Dr. Martin Ruckes Organisation: KIT Department of Economics and Management Part of: M-WIWI-101480 - Finance 3 M-WIWI-101483 - Finance 2 M-WIWI-101502 - Economic Theory and its Application in Finance Version Credits Туре **Grading scale** Recurrence Written examination Grade to a third Each summer term 2 4,5 Exams WT 20/21 7900136 Corporate Risk Management Ruckes

Competence Certificate

Please note that the lecture will not be offered in summer semester 2020.

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation. The exam is offered each semester. If there are only a small number of participants registered for the exam, we reserve the right to hold an oral examination instead of a written one.

Prerequisites

None

Recommendation

None

Annotation

The course will exceptionally be held in the winter semester 2019/2020. Usually, however, the event takes place as a block course in the summer semester.

Competence Certificate

The examination is offered for first-time writers for the last time in the winter semester 2020/21 and (only) for repeaters in the summer semester 2021.

The assessment consists of a written exam (75 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation. The examination is offered every semester and can be repeated at every regular examination date.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites

None

Recommendation

Knowledge from the course "Derivatives" is very helpful.

Annotation

The course will no longer be offered from winter semester 2020/21.

6.73 Course: Critical Information Infrastructures [T-WIWI-109248] Т **Responsible:** Prof. Dr. Ali Sunyaev Organisation: KIT Department of Economics and Management Part of: M-WIWI-104403 - Critical Digital Infrastructures M-WIWI-104812 - Information Systems: Engineering and Transformation Credits **Grading scale** Recurrence Version Туре Examination of another type Grade to a third 4,5 Each winter term 4 **Events** WT 20/21 2511400 Critical Information Infrastructures 2 SWS Lecture / Sunyaev, Dehling, Lins WT 20/21 2511401 Exercises to Critical Information 1 SWS Practice / Sunvaey, Dehling, Lins

		Infrastructures		
Exams				
WT 20/21	7900067	Critical Information Infrastructures		Sunyaev
ST 2021	7900061	Critical Information Infrastructures		Sunyaev

Legend: Doline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The alternative exam assessment consists of

- the preparation of a written elaboration as well as
- an oral examination as part of a presentation of the work.

Details of the grades will be announced at the beginning of the course.

The examination is only offered to first-time students in the winter semester, but can be repeated in the following summer semester.

Prerequisites None.

Annotation

New lecture from winter semester 2018/2019.

Below you will find excerpts from events related to this course:

Critical Information Infrastructures 2511400, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

The course critical information infrastructures (CII) introduces students to the world of complex sociotechnical systems that permeate societies on a global scale. Students will learn to handle the complexities involved in the design, development, operation, and evaluation of critical information infrastructures. In the beginning of the course, critical information infrastructures will be introduced on a general level.

The following sessions will focus on an in-depth exploration of selected cases that represent current challenges in research and practice. Students will work (in a group of 4) on a selected topic and have to write a course paper. Students can choose a topic from a variety of topics. To answer the research questions, students can use literature reviews but also interviews, surveys, programming tasks, and other research methods.

There will be a short introduction to the topics for the course paper in the following topic areas. In addition, it will be possible to propose your own topics as a group in the topic areas:

- Distributed Ledger Technology
- Internet of Things / Edge and Fog Computing
- Cloud Computing
- Health Information Infrastructures
- Information Privacy
- Certification of Critical IT-Services

Since we offer topics in this course that also correspond to the research interests in our research group, there may be the opportunity to work on the topics in more depth in the course of a final thesis.

Learning objectives:

Students know concepts and technologies relevant for the design and reliable operation of critical information infrastructures and can leverage them to develop solutions for real-world challenges.

Notes:

The number of participants is limited to 24 students. Please register via the WiWi portal: https://portal.wiwi.kit.edu/ys/3853

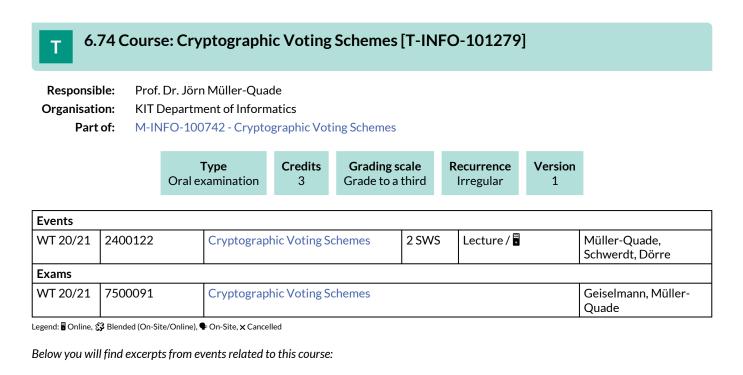
The registration will be opened from September 1, 2020 until October 12, 2020.

Please make sure that you are available at the following dates if you want to take the course:

- 11.2020, 11:30 am-01:00 pm: 1. Foundations of Critical Information Infrastructures
- 11.2020, 11:30 am-01:00 pm: 2. Topic Area Presentation
- 11.2020, 11:30 am-01:00 pm: 3. Critical Information Infrastructure Landscape
- 11.2020, 11:30 am-01:00 pm: 4. Research on Information Systems & Group Assignment
- 12.2020, 10:00 am-04:00 pm: Interim Presentation
- 02.2021, 10:00 am-04:00 pm: Final Presentation

Further information on the course structure will be announced in the first session. Depending on the number of participants the individual sessions can have a shorter duration.

The meetings will take place online via MS Teams. We will provide a link to join the team if your registration was approved.


If you have any questions regarding course registration, please contact lins@kit.edu or dehling@kit.edu

Organizational issues

Bitte beachten Sie die geänderte Terminplanung. Die Vorlesung wird als Blockveranstaltung durchgeführt.

Literature

Dehling T., Lins S., Sunyaev A. (2019) Security of Critical Information Infrastructures. In: Reuter C. (eds) Information Technology for Peace and Security. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25652-4_15

V	Cryptogra
¥	2400122 \

Cryptographic Voting Schemes	Lecture (V)
2400122, WS 20/21, 2 SWS, Language: German, Open in study portal	Online

6.75 Course: Current Directions in Consumer Psychology [T-WIWI-111100]

Responsible:	Prof. Dr. Benjamin Scheibehenne
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-105312 - Marketing and Sales Management

	Type Examination of anot	ther type	Credits 3	Grading sc Grade to a t		Recurrence Once	Expansion 1 terms	Version 1	
Events									
WT 20/21	2540441 Current Directions in Consumer Psychology		Consumer	2 SW	/S Others (se	ons / 🕃	Scheibehenn		

WT 20/21	7900361	Current Directions in Consumer Psyc	Scheibehenne				
Exams	Exams						
ST 2021	2540441	Current Directions in Consumer Psychology	2 (Blocked) SWS	Others (sons / 🖥	Scheibehenne, Liu		
		Psychology					

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Non exam assessment. Grading will be based on a continuous basis throughout the semester.

Prerequisites

Strong Interest in Original Research.

Below you will find excerpts from events related to this course:

2540441, WS 20/21, 2 SWS, Language: English, Open in study portal

Others (sonst.) Blended (On-Site/Online)

Content

This class covers current research topics at the intersection between Psychology, Consumer Behavior, and Behavioral Economics. Based on weekly reading assignments of current scientific journal publications, students will get a first-hand experience of the ongoing topics and discussions at this exciting and dynamic area of research. The reading list will be announced at the first day of class. Grades will be based on continuous participation throughout the semester including short oral presentation of papers in class, active engagement in discussions and homework assignments. This class will be taught in English.

Organizational issues

bei unter 6 Teilnehmer*innen in Präsenz am Institut, sonst online

Current Directions in Consumer Psychology

2540441, SS 2021, 2 (Blocked) SWS, Language: English, Open in study portal

Others (sonst.) Online

Content

This class covers current research topics at the intersection between Psychology, Consumer Behavior, and Behavioral Economics. Based on weekly reading assignments of current scientific journal publications, students will get a first-hand experience of the ongoing topics and discussions at this exciting and dynamic area of research. The reading list will be announced at the first day of class. Grades will be based on continuous participation throughout the semester including short oral presentation of papers in class, active engagement in discussions and homework assignments. This class will be taught in English.

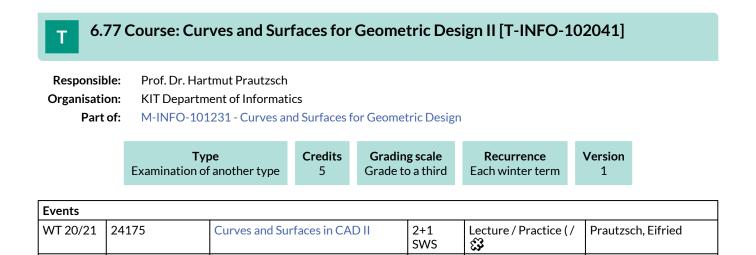
Competence Certificate

Non exam assessment (following §4(2) 3 of the examination regulation).

Prerequisites

None

Recommendation


None

Annotation

Please note that the seminars we offer vary from semester to semester. Information about the currently offered seminars can be found in the Wiwi-Portal and on the iTM Website.

Lecture / Practice (/

•

2+1

SWS

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

24175

Below you will find excerpts from events related to this course:

ST 2021

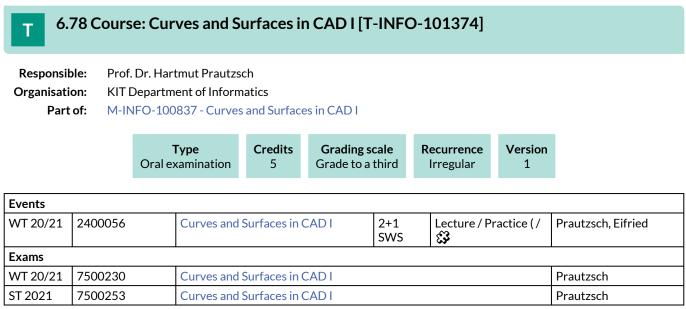
Curves and Surfaces in CAD II

24175, WS 20/21, 2+1 SWS, Language: German/English, Open in study portal

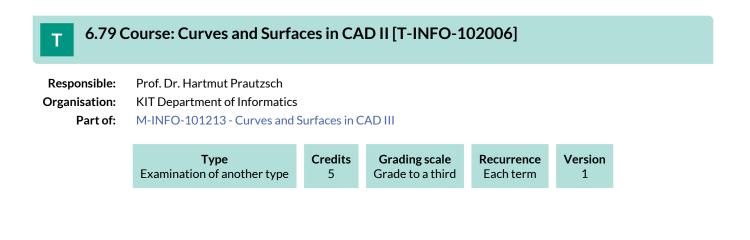
Kurven und Flächen im CAD II

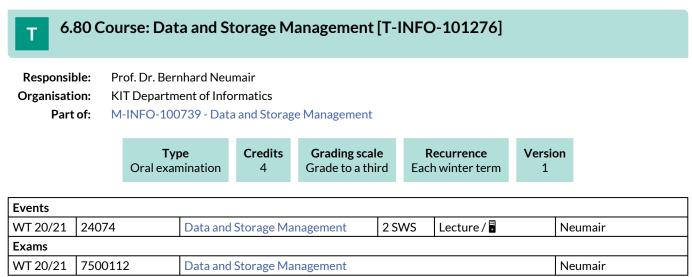
Lecture / Practice (VÜ) Blended (On-Site/Online)

Prautzsch, Xu

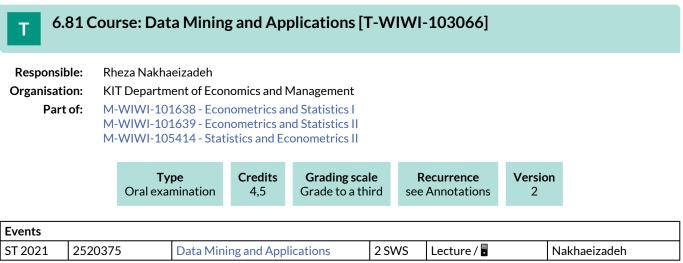

Content

Bèzier-and B-spline techniques, constructive algorithms, underlying geometric structures, as described in the book "Bèzier-and B-spline techniques".


The first part of the course covers curves and tensor product surfaces, the second is on constructions of smooth free form surfaces. Rational, focal and homogenous curves and surfaces are also discussed in both parts.


Literature

Prautzsch, Boehm, Paluszny: Bézier and B-Spline Techniques, Springer 2002. Farin: Curves and Surfaces for CAGD, Fifth Edition, 2002.



Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The course will be held for the last time in the summer semester 2021. The last exam opportunity for first-timers will be in the summer semester 2021. A last exam opportunity (for repeaters only) will be offered in the winter semester 2021/2022.

- Conduction of a larger emprical study in groups
- reporting of milestones
- final presentation (app. 45 minutes)

Prerequisites

None

Annotation The course will be held for the last time in the summer semester of 2021.

Below you will find excerpts from events related to this course:

Data Mining and Applications 2520375, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

Learning objectives:

Students

- know the definition of Data Mining
- are familiar with the CRISP-DM
- are familiar with the most important Data Mining Algorithms like Decision Tree, K-Means, Artificial Neural Networks, Association Rules, Regression Analysis
- will be able to use a DM-Tool

Content:

Part one: Data Mining:

What is Data Mining?; History of Data Mining; Conferences and Journals on Data Mining; Potential Applications; Data Mining Process; Business Understanding; Data Understanding; Data Preparation; Modeling; Evaluation; Deployment; Interdisciplinary aspects of Data Mining; Data Mining tasks; Data Mining Algorithms (Decision Trees, Association Rules, Regression, Clustering, Neural Networks); Fuzzy Mining; OLAP and Data Warehouse; Data Mining Tools; Trends in Data Mining

Part two: Examples of application of Data Mining

Success parameters of Data Mining Projects; Application in industry; Application in Commerce

Workload:

Total workload for 4.5 CP: approx. 135 hours

Attendance: 30 hours

Preparation and follow-up: 65 hours

Exam preparation: 40 hours

Exam preparation: 40 hours

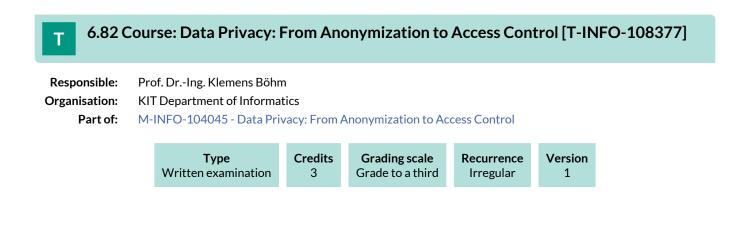
Organizational issues

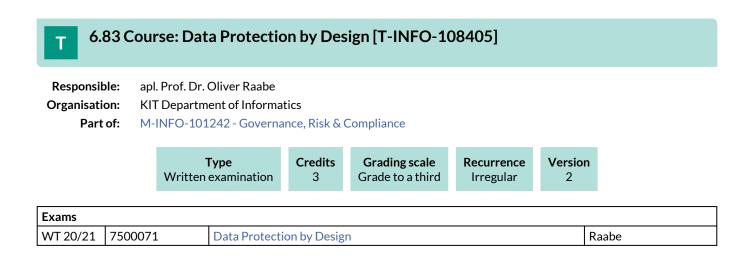
Blockveranstaltung, Termine werden über ILIAS bekannt gegeben

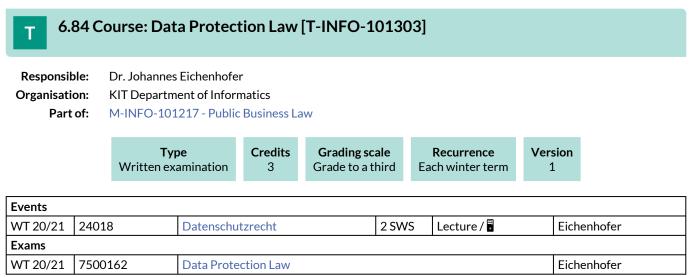
Literature

U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press, 1996 (order online from Amazon.com or from MIT Press).

Jiawei Han, Micheline Kamber, Data Mining : Concepts and Techniques, 2nd edition, Morgan Kaufmann, ISBN 1558609016, 2006.

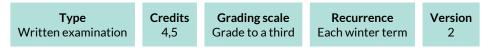

David J. Hand, Heikki Mannila and Padhraic Smyth, Principles of Data Mining, MIT Press, Fall 2000


Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Verlag, 2001.


Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining, Pearson Addison wesley (May, 2005). Hardcover: 769 pages. ISBN: 0321321367

Ripley, B.D. (1996) Pattern Recognition and Neural Networks, Cambridge: Cambridge University Press.

Ian Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd Edition, Morgan Kaufmann, ISBN 0120884070, 2005.



Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

T 6.85 Course: Database Systems and XML [T-WIWI-102661]

Responsible:	Prof. Dr. Andreas Oberweis
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101456 - Intelligent Systems and Services M-WIWI-101477 - Development of Business Information Systems

Events					
WT 20/21	2511202	Database Systems and XML	2 SWS	Lecture /	Oberweis
WT 20/21	2511203	Exercises Database Systems and XML	1 SWS	Practice / 🖥	Oberweis, Frister, Forell, Schreiber, Fritsch
Exams					
WT 20/21	7900007	Database Systems and XML (Registration until 08 February 2021)			Oberweis
ST 2021	7900046	Database Systems and XML (Registration until 12 July 2021)			Oberweis

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

In winter term 2020/21, the exam takes place as an online exam. A trial online exam is scheduled for Feb. 10, 2021 at 5 p.m.

Prerequisites

None

Below you will find excerpts from events related to this course:

Database Systems and XML

2511202, WS 20/21, 2 SWS, Language: German, Open in study portal	Online
--	--------

Content

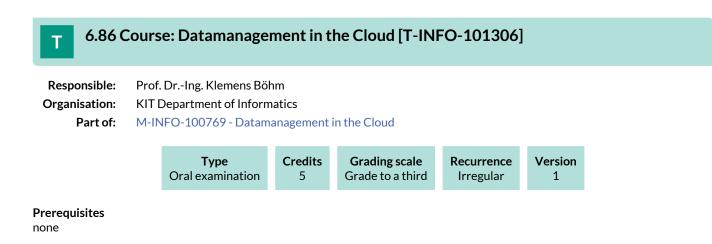
Databases are a proven technology for managing large amounts of data. The oldest database model, the hierarchical model, was replaced by different models such as the relational or the object-oriented data model. The hierarchical model became particularly more important with the emergence of the extensible Markup Language XML. XML is a data format for structured, semi-structured, and unstructured data. In order to store XML documents consistently and reliably, databases or extensions of existing data base systems are required. Among other things, this lecture covers the data model of XML, concepts of XML query languages, aspects of storage of XML documents, and XML-oriented database systems.

Learning objectives:

Students

- know the basics of XML and generate XML documents,
- are able to use XML database systems and to formulate queries to XML documents,
- know to assess the use of XML in operational practice in different application contexts.

Workload:


- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h

Lecture (V)

Literature

- M. Klettke, H. Meyer: XML & Datenbanken: Konzepte, Sprachen und Systeme. dpunkt.verlag 2003
- H. Schöning: XML und Datenbanken: Konzepte und Systeme. Carl Hanser Verlag 2003
- W. Kazakos, A. Schmidt, P. Tomchyk: Datenbanken und XML. Springer-Verlag 2002
- R. Elmasri, S. B. Navathe: Grundlagen der Datenbanksysteme. 2009
- G. Vossen: Datenbankmodelle, Datenbanksprachen und Datenbankmanagementsysteme. Oldenbourg 2008

Weitere Literatur wird in der Vorlesung bekannt gegeben.

Part of:

6.87 Course: Decentralized Systems: Fundamentals, Modeling, and Applications [T-INFO-110820]

Responsible: Prof. Dr. Hannes Hartenstein

Organisation: KIT Department of Informatics

M-INFO-105334 - Decentralized Systems: Fundamentals, Modeling, and Applications

Events					
ST 2021	2400089	Decentralized Systems: Fundamentals, Modeling, and Applications	3 SWS	Lecture / Practice (/	Hartenstein, Bayreuther, Stengele
Exams					
ST 2021	7500284	Decentralized Systems: Fundame	Decentralized Systems: Fundamentals, Modeling, and Applications		
egend: 🖥 Online.	. 🕄 Blended (On-Site/On	line), 🗣 On-Site, 🗙 Cancelled			·

Legend: Donine, 🔊 Biended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Content

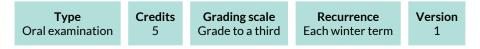
Decentralized Systems (like blockchain-based systems) represent distributed systems that are controlled by multiple parties who make their own independent decisions. In this course, we cover fundamental theoretical aspects as well as up-to-date decentralized systems and connect theory with current practice. We thereby address fault tolerance, security & trust, as well as performance aspects. Furthermore, we address measurements, modeling and simulation of decentralized systems and applications like Bitcoin and Matrix.

Prior knowledge in Foundations of IT-Security and Computer Networks is recommended.

Amount of Work

Lecture: $15 \times 2h = 30h$ Weekly lecture preparation and follow-up: $15 \times 2 \times 2h = 60h$ Exam preparation: 30h

120h = 4 ECTS


Learning Objectives

- 1. Theoretic Fundamentals
 - 1. The student is able to recognize and distinguish distributed, federated, and decentralized systems.
 - 2. The student understands consensus, consistency and coordination within the context of networked and decentralized systems.
 - 3. The student understands the formally proven limits of fault tolerance and their underlying assumptions. This includes an understanding of the synchronous and asynchronous network model which underpin the respective proofs. The student also understands several models for fault tolerance, notably silent and noisy crash as well as byzantine fault tolerance within the context of decentralized and distributed systems.
 - 4. The student knows various models for and levels of consistency. In particular, strictly ordered, causally ordered, partially ordered consistency as well as numerical and temporal relaxations thereof.
- 2. Modeling & Simulation
 - 1. The student understands discrete event-based simulation as a scientific tool and is able to apply this concept properly to examine networked and decentralized systems.
 - 2. The student understands the generation, manipulation, and evaluation of randomness and its relevance to simulation of networked and decentralized systems.
 - 3. The student is able to statistically evaluate, visualize, and interpret the results of simulations.
- 3. Applications
 - 1. The student has a fundamental understanding of blockchain-based cryptocurrencies (e.g. Bitcoin/Ethereum), decentralized communication systems like Matrix, and understands trust relations in distributed and decentralized systems.

The student is able to understand how the previously introduced theoretical foundations relate to networked and decentralized systems in practice.

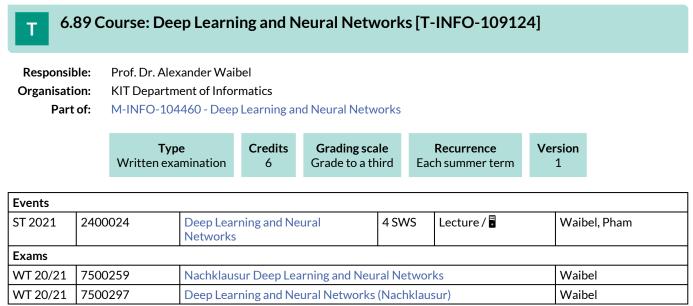
6.88 Course: Decision Procedures with Applications to Software Verification [T-INFO-108955]

Responsible:Prof. Dr. Carsten SinzOrganisation:KIT Department of InformaticsPart of:M-INFO-104381 - Decision Procedures with Applications to Software Verification

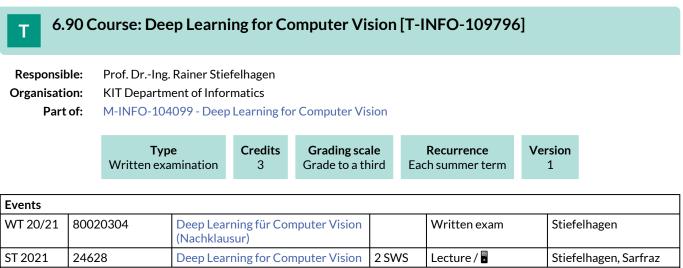
Events						
WT 20/21	2400073	Decision Procedures with Applications to Software Verification	3 SWS	Lecture / Practice (/	Sinz	
Exams						
WT 20/21	7500212	Decision Procedures with Applications to Software Verification			Sinz	
Lesend: Online. 33 Blended (On-Site/Online). On-Site: x Cancelled						

Legend: Doline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:



Decision Procedures with Applications to Software VerificationLecture / Practice (VÜ)2400073, WS 20/21, 3 SWS, Language: German, Open in study portalOnline


Content

In this lecture we will present decision procedures that are used in software verification.

Such decision procedures are typically implemented in SMT solvers.

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Exams				
WT 20/21	7500045	Content-based Image and Video Retrieval	Stiefelhagen	
ST 2021	7500024	Deep Learning for Computer Vision	Stiefelhagen	

Legend: Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Recommendation

Basic knowledge of pattern recognition as taught in the module Cognitive Systems, is expected.

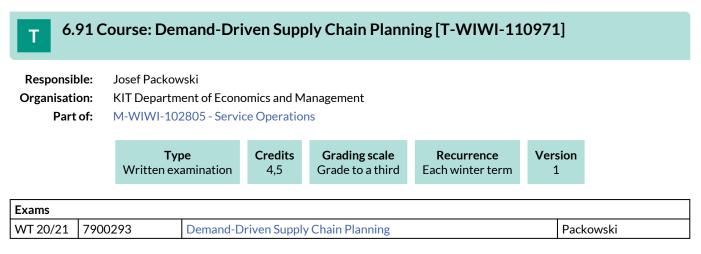
Annotation

The course is partially given in German and English.

Below you will find excerpts from events related to this course:

Deep Learning for Computer Vision

24628, SS 2021, 2 SWS, Language: German, Open in study portal

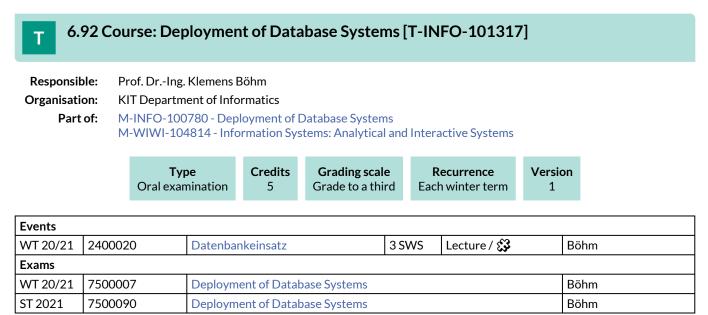

Content

In recent years tremendous progress has been made in analysing and understanding image and video content. The dominant approach in Computer Vision today are deep learning approaches, in particular the usage of Convolutional Neural Networks.

The lecture introduces the basics, as well as advanced aspects of deep learning methods and their application for a number of computer vision tasks. The following topics will be addressed in the lecture:

- Introduction to Deep Learning
- Convolutional Neural Networks (CNN): Background
- CNNs: basic architectures and learning algorithms
- Object Recognition with CNN
- Image Segmentation with CNN
- Recurrent Neural Networks
- Generating image descriptions (Image Captioning)
- Automatic question answering (Visual Question Answering)
- Generative Adversarial Networks (GAN) and their applications
- Deep Learning platforms and tools

Lecture (V) Online



Competence Certificate

The assessment consists of a written exam.

Annotation

Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course. The course is planned to be held every winter term. The planned lectures and courses for the next three years are announced online.

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Version

1

6.93 Course: Derivatives [T-WIWI-102643]

Responsible: Organisation: Part of:	Organisation: KIT Department of Economics and Management				
	Type Written examination	Credits 4,5	Grading scale Grade to a third	Eac	

Events					
ST 2021	2530550	Derivatives	2 SWS	Lecture /	Uhrig-Homburg
ST 2021	2530551	Übung zu Derivate	1 SWS	Practice /	Uhrig-Homburg, Eska
Exams					
WT 20/21	7900051	Derivatives			Uhrig-Homburg

Recurrence

Each summer term

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 60minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites None

Recommendation

None

Below you will find excerpts from events related to this course:

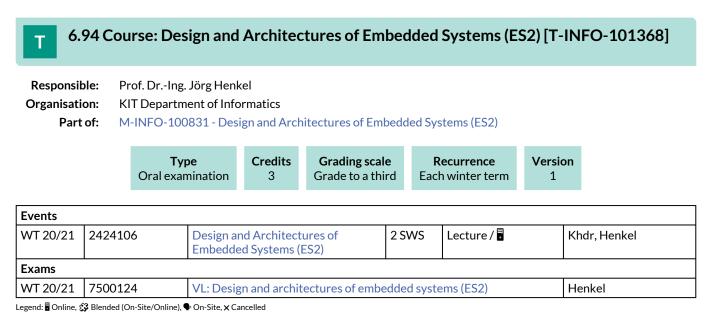
V

Derivatives

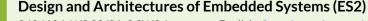
2530550, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Organizational issues


Veranstaltungskonzept umfasst vollständige Aufzeichnungen von Vorlesung und Übung. Ergänzend bieten wir zweiwöchig freiwillige Live-Fragerunden zum fachlichen und organisatorischen Austausch an.

Literature


• Hull (2012): Options, Futures, & Other Derivatives, Prentice Hall, 8th Edition

Weiterführende Literatur:

Cox/Rubinstein (1985): Option Markets, Prentice Hall

Below you will find excerpts from events related to this course:

2424106, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

State-of-the-art System-on-Chips (SoCs) integrate more than a billion transistors on a single chip. Embedded devices powered by these SoCs would be increasingly ubiquitous and seamlessly integrated into the environment. Therefore they will no longer be perceived as separate computing devices. Such examples can be found in Wireless Sensor Networks (WSNs), Cyber Physical Systems (CPSs), electronic textiles and many more.

However, new efficient ESL (Embedded System Level) design tools as well as novel hardware-software architectures must be developed in order to enable embedded devices to achieve their true potential. The focus of this lecture is therefore on the high-level design methods and architectures for embedded systems. Since the power consumption of embedded systems is of paramount importance, this lecture emphasizes on hardware-software co-design procedures targeting low power consumption. Due to the recent advancements in technology, it is now possible to integrate several billion transistors on a single SoC. The trend to add more and more transistors to the SoC continues unabated and leads to multi-fold increase in the SoC's complexity and capabilities. Embedded devices powered by these SoCs would be increasingly ubiquitous and seamlessly integrated into the environment. Therefore they will no longer be perceived as separate computing devices. Such

examples can be found in Wireless Sensor Networks (WSNs), Cyber Physical Systems (CPSs), electronic textiles and many more.

However, new efficient ESL (Embedded System Level) design tools as well as novel hardware-software architectures must be developed in order to enable embedded devices to achieve their true potential. The focus of this lecture is therefore on the high-level design methods and architectures for embedded systems. Since the power consumption of embedded systems is of paramount importance, this lecture emphasizes on hardware-software co-design procedures targeting low power consumption.

Appointments for the oral exam can be requested at exam-ces@ira.uka.de.

The student learns complex hardware-software co-design methods that can be applied to the design of embedded systems. The student assesses and selects specific hardware-software architecture most suitable for an embedded system given its function. Furthermore, the student receives an introduction to the relevant current research topics.

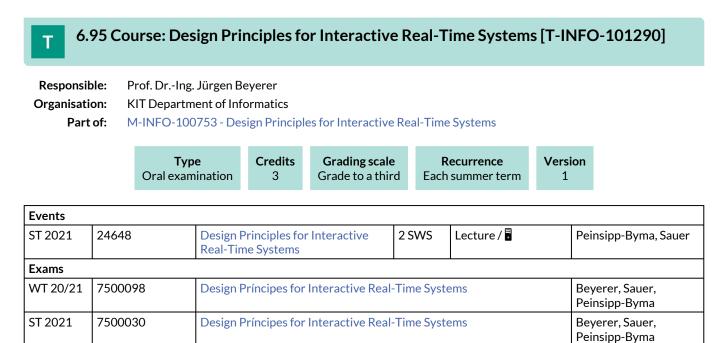
Organizational issues

Online/Zoom (siehe ILIAS)

Literature

"Embedded System Design", F. Vahid, John Wiley&Sons, 2002.

"Embedded System Design", P. Marwedel, Kluwer, 2003.


"The Electronic Design Automation Handbook", D. Jansen (Eds.), 2003.

"System Design: A practical guide with SpecC", A. Gerstlauer et al., Kluwer, 2001.

"Computers as Components", W. Wolf, Morgan Kaufmann, 2001.

"Code Optimization for Embedded Systems", R. Leupers et al., Kluwer, 2001.

Weitere Literatur wird in den jeweiligen Vorlesungen genannt.

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.96 Course: Design Thinking [T-WIWI-102866] Т **Responsible:** Prof. Dr. Orestis Terzidis Organisation: KIT Department of Economics and Management Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon) M-WIWI-101488 - Entrepreneurship (EnTechnon) M-WIWI-101507 - Innovation Management Credits **Grading scale** Recurrence Version Type Examination of another type 3 Grade to a third Each term 1 **Events** WT 20/21 2545008 Design Thinking (Track 1) 2 SWS Seminar / Abraham, Manthey, Terzidis ST 2021 2545008 Design Thinking (Track 1) 2 SWS Seminar / González, Abraham, Csernalabics Exams WT 20/21 7900084 Terzidis **Design Thinking (Track 1)** ST 2021 Terzidis 7900053 Design Thinking (Track 1)

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessments (§4(2), 3 SPO).

Prerequisites None

Recommendation

None

Annotation

The seminar content will be published on the website of the institute.

Below you will find excerpts from events related to this course:

Design Thinking (Track 1)

2545008, WS 20/21, 2 SWS, Language: German, Open in study portal

Seminar (S) Online

Content

Design Thinking is a user-centric innovation management method. The iterative process first analyzes the problem space and builds a sound understanding of the future users. Subsequently, ideas for the solution are generated, prototypes are created and tested by the user group. The result is a proven and validated product.

Learning goals:

During the seminar, the students learn basic procedures for achieving user-centric innovations. These are concrete methods that start with the potential user of certain products and services. The method is problem-oriented and emphasizes the specific customer situation. After attending the seminar, the students have a clear understanding of the need to explore end-user needs and are able to independently apply the methods of Design Thinking for developing market-driven innovations at a basic level.

Credentials:

Registration is via the Wiwi portal.

ATTENTION: Creditability in the seminar module: The seminar is NOT credited in the seminar module! Crediting is only possible in the EXPERT MODULE ENTREPRENEURSHIP.

6.97 Course: Designing Interactive Systems [T-WIWI-110851] Т Prof. Dr. Alexander Mädche **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-104068 - Information Systems in Organizations M-WIWI-104080 - Designing Interactive Information Systems M-WIWI-104814 - Information Systems: Analytical and Interactive Systems Credits **Grading scale** Recurrence Version Type Examination of another type Grade to a third 4,5 Each summer term 1 **Events**

ST 2021	2540558	Designing Interactive Systems	3 SWS	Lecture / 🖥	Mädche, Gnewuch
Exams					
WT 20/21	7900228	Designing Interactive Systems			Mädche
ST 2021	00009	Designing Interactive Systems			Mädche

Legend: 🖥 Online, 🔀 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment. The assessment consists of a one-hour exam and the implementation of a Capstone project. Details will be announced at the beginning of the course.

Prerequisites

None

Annotation

This course replaces T-WIWI-108461 "Interactive Information Systems" starting summer term 2020. The course is held in english.

Below you will find excerpts from events related to this course:

V

Designing Interactive Systems 2540558, SS 2021, 3 SWS, Language: English, Open in study portal Lecture (V) Online

Content Description

Computers have evolved from batch processors towards highly interactive systems. This offers new possibilities but also challenges for the successful design of the interaction between human and computer. Interactive system are socio-technical systems in which users perform tasks by interacting with technology in a specific context in order to achieve specified goals and outcomes.

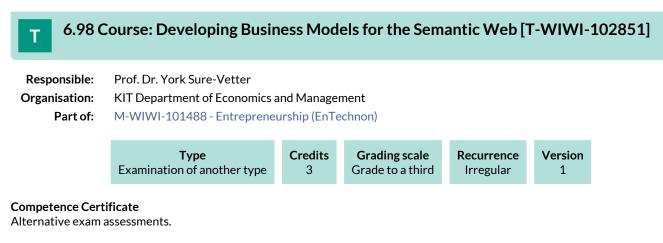
The aim of this course is to introduce advanced concepts and theories, interaction technologies as well as current practice of contemporary interactive systems.

The course is complemented with a design capstone project, where students in a team select and apply design methods & techniques in order to create an interactive prototype

Learning objectives

- Get an advanced understanding of conceptual foundations of interactive systems from a human and computer perspective
- explore the theoretical grounding of Interactive Systems leveraging theories from reference disciplines such as psychology
- know specific design principles for the design of advanced interactive systems
- get hands-on experience in conceptualizing and designing advanced Interactive Systems to solve a real-world challenge from an industry partner by applying the lecture contents.

Prerequisites


No specific prerequisites are required for the lecture

Literature

Die Vorlesung basiert zu einem großen Teil auf

• Benyon, D. (2014). Designing interactive systems: A comprehensive guide to HCI, UX and interaction design (3. ed.). Harlow: Pearson.

Weiterführende Literatur wird in der Vorlesung bereitgestellt.

Prerequisites

None

Recommendation

As a recommendation to attending the seminar, basic knowledge about semantic technologies and concepts should be available. This may be acquired by attending one of the following lectures – Wissensmanagement, Semantic Web Technologies 1, Semantic Web Technologies 2 or by studying related literature. Furthermore the topic entrepreneurship should be of interest.

6.99 Course: Digital Health [T-WIWI-109246] Т Prof. Dr. Ali Sunyaev **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-104403 - Critical Digital Infrastructures M-WIWI-104813 - Information Systems: Internet-based Markets and Services Credits Grading scale Recurrence Version Туре 4,5 Grade to a third Examination of another type Each winter term 3 **Events** WT 20/21 2511402 **Digital Health** 2 SWS Lecture / Sunyaev, Thiebes, Schmidt-Kraepelin Exams WT 20/21 7900068 **Digital Health** Sunyaev ST 2021 7900062 **Digital Health** Sunyaev

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment (written elaboration, presentation, peer review, oral participation) according to §4(2),3 of the examination regulation. Details of the grading will be announced at the beginning of the course. The examination is only offered to first-time writers in the winter semester, but can be repeated in the following summer semester.

Prerequisites

None.

Below you will find excerpts from events related to this course:

Digital Health 2511402, WS 20/21, 2 SWS, Language: German/English, Open in study portal Lecture (V) Online

Content

The master course **Digital Health** introduces master students to the subject of **digitization in health care**. Students will learn about the theoretical foundations and practical implications of various topics surrounding the digitization in health care, including health information systems, telematics, big health care data, and patient-centered health care.

After an introduction to the challenge of digitization in health care, the following sessions will focus on an in-depth exploration of selected cases that represent current challenges in research and practice. Students will work (in a group of 3-4) on a selected topic and have to write a course paper. Students can choose a topic from a variety of topics. To answer the research questions, students can use literature reviews but also interviews, surveys, programming tasks, and other research methods are possible.

There will be a short introduction to the topics for the course paper in the following topic areas. In addition, it will be possible to propose your own topics as a group in the topic areas:

- Mobile Health (mHealth) / Gamification
- Distributed Ledger Technology / Blockchain
- Artificial Intelligence / Machine Learning
- Genomics / Biomedical Data

Since we offer topics in this course that also correspond to the research interests in our research group, there may be the opportunity to work on the topics in more depth in the course of a final thesis.

Learning objectives:

Students know about the challenges of digitization in health care and can leverage relevant concepts and technologies to address these challenges. Students learn to work in teams and critically discuss digital health topics with fellow students, researchers, and practitioners.

Notes:

The number of participants is limited to 24 students. Please register here: https://portal.wiwi.kit.edu/ys/3897

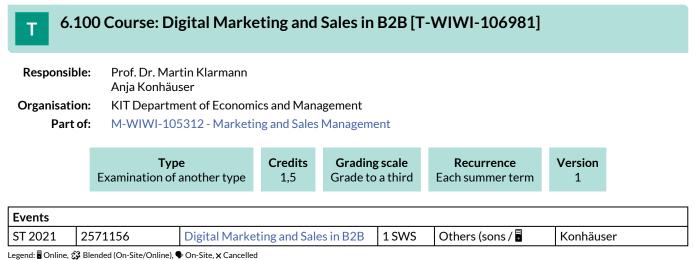
The registration will be opened from September 11, 2020 until October 12, 2020.

Please make sure that you are available at the following dates if you want to take the course:

- 05.11.2020, 16:00-17:30 1. Introduction to Digital Health
- 12.11.2020, 16:00–17:30 2. Topic Area Presentation #1
- 19.11.2020, 16:00–17:30 3. Topic Area Presentation #2
- 26.11.2020, 16:00-17:30 4. Guest Lectures
- 25.02.2021, 10:00-17:00 Final Presentation

Further information on the course structure will be announced in the first session. Depending on the number of participants the individual sessions can have a shorter duration.

The meetings will take place online via MS Teams. We will provide a link to join the team if your registration was approved.


If you have any questions regarding course registration, please contact scott.thiebes@kit.edu or manuel.schmidt-kraepelin@kit.edu

Workload:

4,5 ECTS = approx. 135 hours.

Organizational issues

Bitte beachten Sie die geänderte Terminplanung und das geänderte Anmeldeverfahren (https://portal.wiwi.kit.edu/ys/3897)

Competence Certificate

Alternative exam assessment according to § 4 paragraph 2 Nr. 3 of the examination regulation. (team presentation of a case study with subsequent discussion totalling 30 minutes).

Prerequisites

None.

Annotation

Participation requires an application. The application period starts at the beginning of the semester. More information can be obtained on the website of the research group Marketing and Sales (marketing.iism.kit.edu). Access to this course is restricted. Typically all students will be granted the attendance of one course with 1.5 ECTS. Nevertheless attendance can not be guaranteed.For further information please contact Marketing and Sales Research Group (marketing.iism.kit.edu).Please note that only one of the 1.5-ECTS courses can be attended in this module.

Below you will find excerpts from events related to this course:

Digital Marketing and Sales in B2B 2571156, SS 2021, 1 SWS, Language: English, Open in study portal

Others (sonst.) Online

Content

Learning Sessions:

The class gives insights into digital marketing strategies as well as the effects and potential of different channels (e.g., SEO, SEA, Social Media). After an overview of possible activities and leverages in the digital marketing field, including their advantages and limits, the focus will turn to the B2B markets. There are certain requirements in digital strategy specific to the B2B market, particularly in relation to the value chain, sales management and customer support. Therefore, certain digital channels are more relevant for B2B marketing than for B2C marketing.

Once the digital marketing and tactics for the B2B markets are defined, further insights will be given regarding core elements of a digital strategy: device relevance (mobile, tablet), usability concepts, website appearance, app decision, market research and content management. A major advantage of digital marketing is the possibility of being able to track many aspects of of user reactions and user behaviour. Therefore, an overview of key performance indicators (KPIs) will be discussed and relationships between these KPIs will be explained. To measure the effectiveness of digital activities, a digital report should be set up and connected to the performance numbers of the company (e.g. product sales) – within the course the setup of the KPI dashboard and combination of digital and non-digital measures will be shown to calculate the Return on Investment (RoI).

Presentation Sessions:

After the learning sessions, the students will form groups and work on digital strategies within a case study format. The presentation of the digital strategy will be in front of the class whereas the presentation will take 20 minutes followed by 10 minutes questions and answers.

- Understand digital marketing and sales approaches for the B2B sector
- Recognise important elements and understand how-to-setup of digital strategies
- Become familiar with the effectiveness and usage of different digital marketing channels
- Understand the effect of digital sales on sales management, customer support and value chain
- Be able to measure and interpret digital KPIs
- Calculate the Return on Investment (RoI) for digital marketing by combining online data with company performance data

time of presentness = 15 hrs.

private study = 30 hrs.

Organizational issues

Blockveranstaltung, Raum 115, Geb. 20.21, Termine werden noch bekannt gegeben

Literature

6.101 Course: Digital Services: Business Models and Transformation [T-WIWI-110280]

Responsible:	Prof. Dr. Gerhard Satzger
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101448 - Service Management M-WIWI-102754 - Service Economics and Management M-WIWI-102808 - Digital Service Systems in Industry M-WIWI-104813 - Information Systems: Internet-based Markets and Services

Туре	Credits	Grading scale	Recurrence	Version
Written examination	4,5	Grade to a third	Each winter term	1

Events						
WT 20/21	2595484	Digital Services: Business Models and Transformation	2 SWS	Lecture /	Satzger, Schüritz	
WT 20/21	2595485		Enders, Schüritz			
Exams						
WT 20/21	7900302	Digital Services: Business Models a	Digital Services: Business Models and Transformation			

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of this course is a written examination (60 min.) (following §4(2), 1 SPOs) and by submitting written papers as part of the exercise.

Prerequisites

None

Recommendation

None

Annotation

former name until winter semester 2019/2020: "Business and IT Service Management" (T-WIWI-102881)

Below you will find excerpts from events related to this course:

Digital Services: Business Models and Transformation 2595484, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

Digitalization fuels the trends towards a service-led economy and drives the emergence of innovative digital services, but also new service-oriented offerings of existing enterprises ("servitization"). In particular, the use of new data resources (e.g., sensor-based data in the Internet of Things) and analytical methods open up ample opportunities for new data-driven services and associated novel business models.

In this lecture, we systematically build the theoretical and practical foundations on how to adapt, create and transform business models around digital services – using a top-down approach: The first part of the lecture is devoted to *general service* theory, management and transformation as a base for digital service businesses. The second and third part of the lecture then further zoom in into the specifics of *digital service* and *data-based service* business models and their transformation. Throughout the lecture, we put a particular focus on service systems – elevating the service and business model perspective from individual enterprises to larger "(eco-)systems" or "platforms".

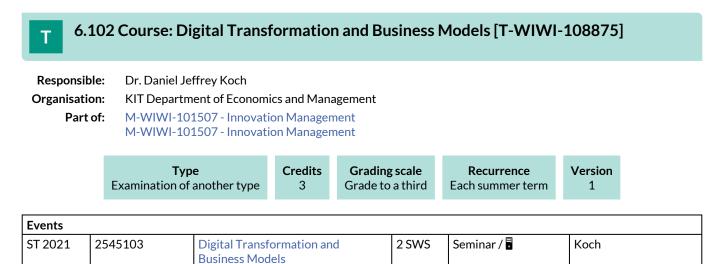
The lecture links theoretical content and current research to practical examples and exercises. Students are invited to actively engage in the discussion and contribute their knowledge. Invited guest speakers from industry as well as case studies ensure sufficient application orientation of this lecture.

Note: While the lecture builds upon aspects of the "Digital Service" lecture in the bachelor program, it is not mandatory for students to have participated in it.

Literature

Böhmann, T., Leimeister, J.M., Möslein, K. (2014). Service Systems Engineering, Business & Information Systems Engineering, 6(2), 73-79.

Cardoso et al. (2015). Fundamentals of Service Systems.


Hartmann P., Zaki M., Feldmann N., Neely A. (2016). Capturing value from big data - a taxonomy of data-driven business models used by start-up firms. IJPOR, 36(10), 1382-1406.

Schüritz R., Seebacher S., Satzger G., Schwartz L. (2017). Datatization as the Next Frontier of Servitization. Proceedings of International Conference on Information Systems 2017.

Vargo S., Lusch R. (2017). Service-dominant logic 2025. International Journal of Research in Marketing, 34(1), 46-67.

Weill, P., Woerner, S.L. (2018). What's your Digital Business Model? – Six Questions to Help you Build the Next-Generation Enterprise. Harvard Business Review Press.

Wirtz, B. (2019). Digital Business Models - Concepts, Models, and the Alphabet Case Study. Springer.

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

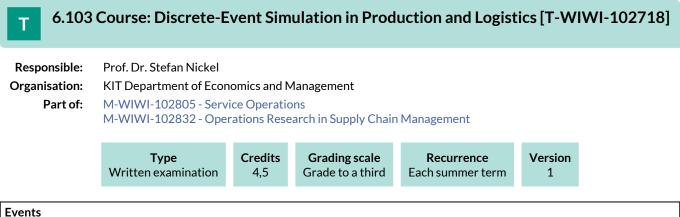
Non exam assessment (following §4(2) 3 of the examination regulation). The final grade is composed 75% of the grade of the written paper and 25% of the presentation.

Prerequisites

None

Recommendation

Prior attendance of the course Innovation Management is recommended.


Below you will find excerpts from events related to this course:

Digital Transformation and Business Models	Seminar (S)
2545103, SS 2021, 2 SWS, Language: German, Open in study portal	Online

Content

The seminar "Digital Transformation and Business Models" aims at the development of thematic aspects of digital transformation with simultaneous application of different business model methodologies. Established companies face the challenge of digital transformation. The digital transformation is particularly relevant for the business models of industrial enterprises. As part of innovation management, the examination of business model changes against the background of digital transformation is one of the main challenges facing the German economy. At the beginning, seminar topics will be assigned. These will be presented and discussed at the end of the seminar. In the first seminar date impulses to business model methodologies and the digital transformation take place, which are to be discussed then, in order to provide an understanding for the topic complex and to ensure the purposeful development of the seminar topics.

Events						
ST 2021	2550488	Ereignisdiskrete Simulation in Produktion und Logistik	3 SWS	Lecture / 🖥	Spieckermann	

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written paper and an oral exam of about 30-40 min (alternative exam assessment).

Prerequisites

None

Recommendation

Basic knowledge as conveyed in the module "Introduction to Operations Research" is assumed.

Annotation

Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course.

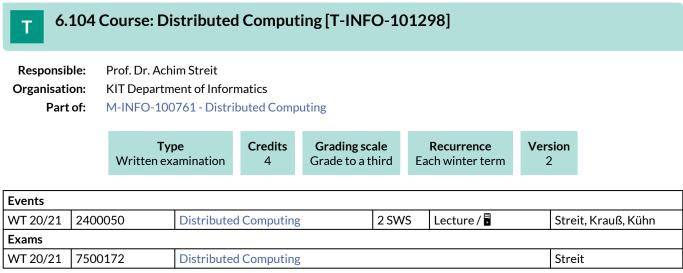
The course is planned to be held every summer term.

The planned lectures and courses for the next three years are announced online.

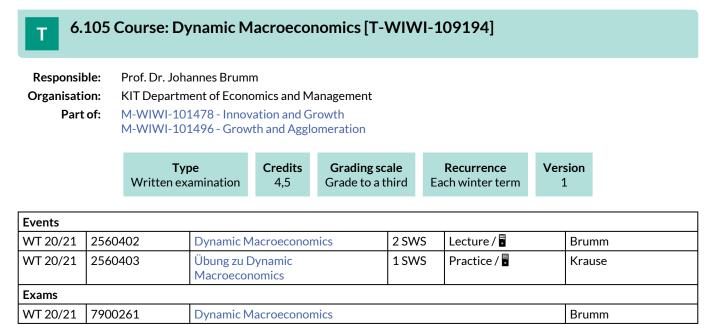
Below you will find excerpts from events related to this course:

Ereignisdiskrete Simulation in Produktion und Logistik

2550488, SS 2021, 3 SWS, Language: German, Open in study portal


Lecture (V) Online

Content


Simulation of production and logistics systems is an interdisciplinary subject connecting expert knowledge from production management and operations research with mathematics/statistics as well as computer science and software engineering. With completion of this course, students know statistical foundations of discrete simulation, are able to classify and apply related software applications, and know the relation between simulation and optimization as well as a number of application examples. Furthermore, students are enabled to structure simulation studies and are aware of specific project scheduling issues.

Literature

- Banks J., Carson II J. S., Nelson B. L., Nicol D. M. (2010) Discrete-event system simulation, 5. Aufl., Pearson, Upper Saddle River.
- Eley, M. (2012): Simulation in der Logistik Einführung in die Erstellung ereignisdiskreter Modelle unter Verwendung des Werkzeuges "Plant Simulation", Springer, Berlin und Heidelberg
- Kosturiak, J. und M. Gregor (1995): Simulation von Produktionssystemen. Springer, Wien und New York.
- Law, A. M. (2015): Simulation Modeling and Analysis. 5th Edition, McGraw-Hill, New York usw.
- Liebl, F. (1995): Simulation. 2. Auflage, Oldenbourg, München.
- Noche, B. und S. Wenzel (1991): Marktspiegel Simulationstechnik. In: Produktion und Logistik. TÜV Rheinland, Köln.
- Pidd, M. (2004): Computer Simulation in Management Science. 5th Edition, Wiley, Chichester.
- Robinson S (2004) Simulation: the practice of model development and use. John Wiley & Sons, Chichester
- VDI (2014): Simulation von Logistik-, Materialfluß- und Produktionssystemen. VDI Richtlinie 3633, Blatt 1, VDI-Verlag, Düsseldorf.

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

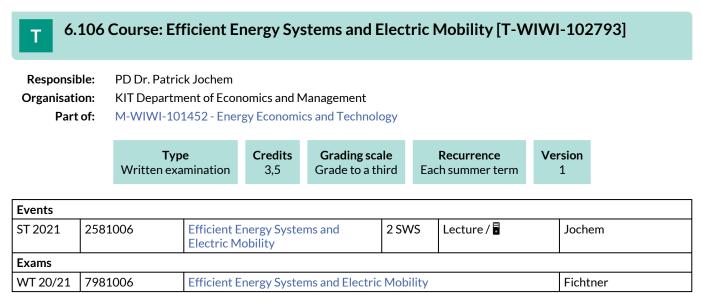
Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prereauisites None.

Below you will find excerpts from events related to this course:


Dynamic Macroeconomics

2560402, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Literature

Literatur und Skripte werden in der Veranstaltung angegeben.

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes) (following \$4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following \$4(2), 3 of the examination regulation).

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

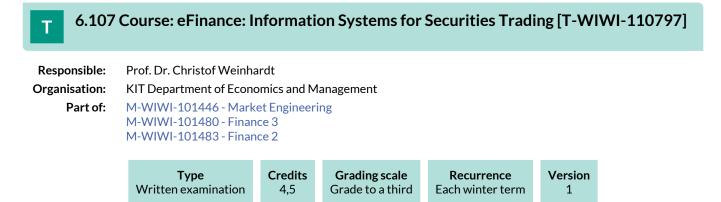
Efficient Energy Systems and Electric Mobility

2581006, SS 2021, 2 SWS, Language: English, Open in study portal	1
--	---

Lecture (V) Online

Content

This lecture series combines two of the most central topics in the field of energy economics at present, namely energy efficiency and electric mobility. The objective of the lecture is to provide an introduction and overview to these two subject areas, including theoretical as well as practical aspects, such as the technologies, political framework conditions and broader implications of these for national and international energy systems.


- Understand the concept of energy efficiency as applied to specific systems
- Obtain an overview of the current trends in energy efficiency
- Be able to determine and evaluate alternative methods of energy efficiency improvement
- Overview of technical and economical stylized facts on electric mobility
- Judging economical, ecological and social impacts through electric mobility

Organizational issues

Freitag 09:00-11:15 Uhr

Literature

Wird in der Vorlesung bekanntgegeben.

Events					
WT 20/21	2540454	eFinance: Information Systems for Securities Trading	2 SWS	Lecture /	Weinhardt, Notheisen
WT 20/21	2540455	Übungen zu eFinance: Informationssysteme für den Wertpapierhandel	1 SWS	Practice / 🕃	Jaquart
Exams	•				
WT 20/21	7900182	eFinance: Information Engineering a Trading	eFinance: Information Engineering and Management for Securities Trading		
WT 20/21	7900309	eFinance: Information Systems for S	eFinance: Information Systems for Securities Trading		

Legend: Doline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Success is monitored by means of ongoing elaborations and presentations of tasks and an examination (60 minutes) at the end of the lecture period. The scoring scheme for the overall evaluation will be announced at the beginning of the course.

Prerequisites

see below

Annotation

The course"eFinance: Information Systems for Securities Trading" covers different actors and their function in the securities industry in-depth, highlighting key trends in modern financial markets, such as Distributed Ledger Technology, Sustainable Finance, and Artificial Intelligence. Security prices evolve through a large number of bilateral trades, performed by market participants that have specific, well-regulated and institutionalized roles. Market microstructure is the subfield of financial economics that studies the price formation process. This process is significantly impacted by regulation and driven by technological innovation. Using the lens of theoretical economic models, this course reviews insights concerning the strategic trading behaviour of individual market participants, and models are brought market data. Analytical tools and empirical methods of market microstructure help to understand many puzzling phenomena in securities markets.

Below you will find excerpts from events related to this course:

eFinance: Information Systems for Securities Trading

2540454, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

The course "eFinance: Information Systems for Securities Trading" covers different actors and their function in the securities industry in-depth, highlighting key trends in modern financial markets, such as Distributed Ledger Technology, Sustainable Finance, and Artificial Intelligence. Security prices evolve through a large number of bilateral trades, performed by market participants that have specific, well-regulated and institutionalized roles. Market microstructure is the subfield of financial economics that studies the price formation process. This process is significantly impacted by regulation and driven by technological innovation. Using the lens of theoretical economic models, this course reviews insights concerning the strategic trading behaviour of individual market participants, and models are brought market data. Analytical tools and empirical methods of market microstructure help to understand many puzzling phenomena in securities markets.

Literature

- Maureen O'Hara: Market Microstructure Theory (1997, Blackwell Publishing)
- Larry Harris: Trading and Exchanges Market Microstructure for Practitioners (2004, Oxford University Press)

Further Literature

- Joel Hasbrouck: Empirical Market Microstructure (2007, Oxford University Press)
- Thierry Foucault, Marco Pagano, and Ailsa Roell: Market Liquidity: Theory, Evidence, and Policy (2013, Oxford University Press)


6.108 Course: Embedded Systems for Multimedia and Image Processing [T-INFO-101296]

Responsible: Organisation: Part of:

Prof. Dr.-Ing. Jörg Henkel

sation: KIT Department of Informatics

M-INFO-100759 - Embedded Systems for Multimedia and Image Processing

6.109 Course: Emerging Trends in Digital Health [T-WIWI-110144] Т **Responsible:** Prof. Dr. Ali Sunyaev Organisation: KIT Department of Economics and Management Part of: M-WIWI-104403 - Critical Digital Infrastructures Credits Type **Grading scale** Recurrence Version 4,5 Grade to a third 2 Examination of another type Each summer term Events ST 2021 Seminar Emerging Trends in Digital 2 SWS Seminar / 2513404 Lins, Sunyaev, Thiebes Health (Bachelor) ST 2021 Seminar / 2513405 Seminar Emerging Trends in Digital 2 SWS Lins, Sunyaev, Thiebes Health (Master) Exams ST 2021 7900146 Sunyaev

 ST 2021
 7900146
 Seminar Emerging Trends in Digital Health (Master)

 Legend: Online, Stended (On-Site/Online), On-Site, x Cancelled

Competence Certificate

The alternative exam assessment consists of a final thesis.

Prerequisites None.

Annotation

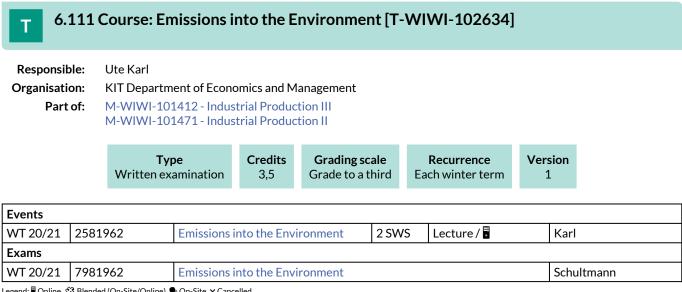
The course is usually held as a block course.

Responsible:	Prof. Dr. Ali Sunyaev
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-104403 - Critical Digital Infrastructures

	Examinatio	Type n of another type	Credits 4,5		g scale o a third	Recurrence Each summer term	Version 2	
Events								
ST 2021	2513402		Seminar Emerging Trends in Internet Technologies (Bachelor)		2 SWS	Seminar / 🖥	Sunyaev,	Thiebe
ST 2021	2513403	Sominar Emo	Sominar Emorging Tronds in		2 514/5	Sominar /		

ST 2021		Seminar Emerging Trends in Internet Technologies (Master)	2 SWS	Seminar / 🖥	Lins, Sunyaev, Thiebes	
Exams						
ST 2021	7900128	Seminar Emerging Trends in Internet	Sunyaev			

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled


Competence Certificate

The alternative exam assessment consists of a final thesis.

Prerequisites None.

Annotation

The course is usually held as a block course.

Legend: 🖥 Online, 🚯 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Recommendation

None

Below you will find excerpts from events related to this course:

Emissions into the Environment

2581962, WS 20/21, 2 SWS, Language: German, Open in study portal

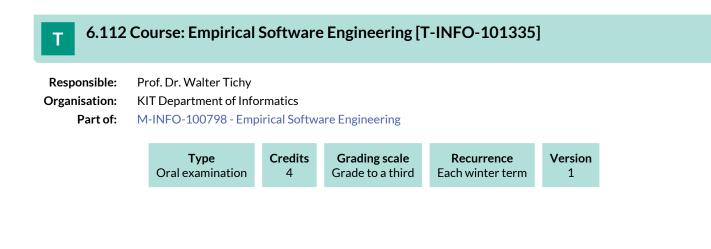
Content

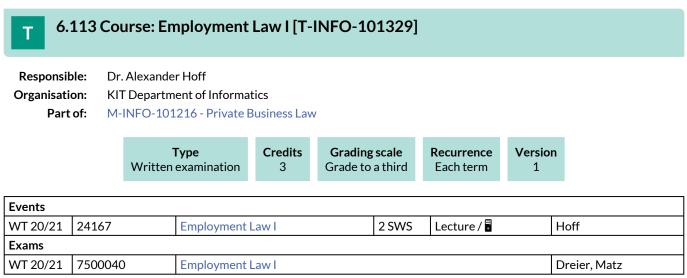
Emission sources/emission monitoring/emission reduction: The lecture gives an overview of relevant emissions of air pollutants and greenhouse gases, emission monitoring and pollutant abatement options together with relevant legal regulations at national and international level. In addition, the fundamentals of circular economy, waste management and recycling are explained.

Structure:

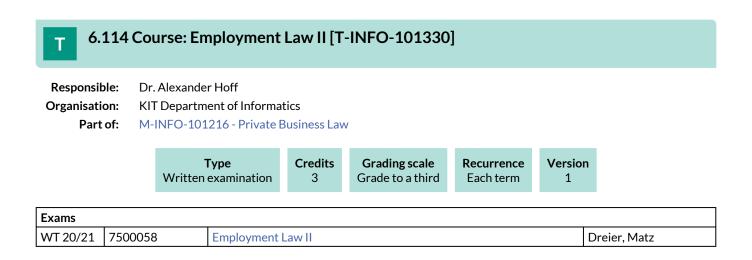
Air pollution control

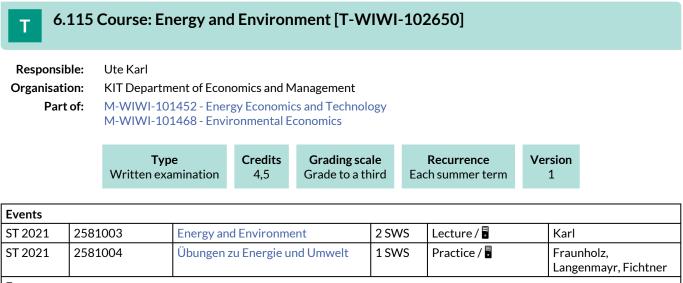
- Introduction, terms and definitions
- Sources of air pollutants
- Legal framework of air quality control •
- Technical measures to reduce air pollutant emissions


Circular economy, recycling and waste management


- Waste collection and logistics
- Dual systems for packaging waste •
- Recycling
- Thermal and biological waste treatment
- Final waste disposal

Literature


Wird in der Veranstaltung bekannt gegeben.


Lecture (V) Online

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Exams		
WT 20/21 7981003	Energy and Environment	Fichtner

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None.

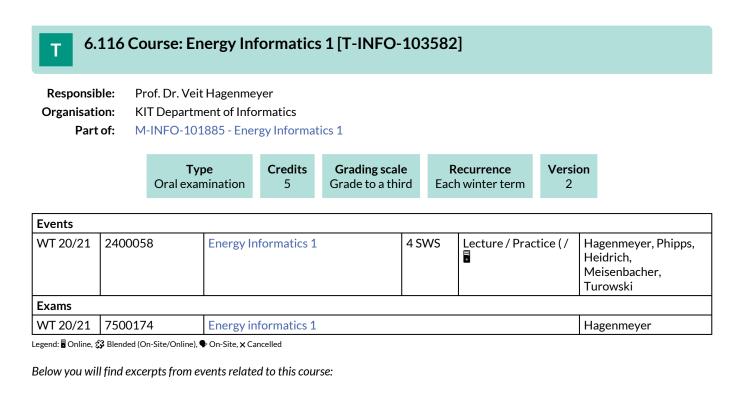
Below you will find excerpts from events related to this course:

Energy and Environment

2581003, SS 2021, 2 SWS, Language: German, Open in study portal

Content

The lecture focuses on the environmental impacts arising from fossil fuels use and on the methods for the evaluation of such impacts. The first part of the lecture describes the environmental impacts of air pollutants and greenhouse gases as well as technical measures for emission control. The second part covers methods of impact assessment and their use in environmental communication as well as methods for the scientific support of emission control strategies.


The topics include:

- Fundamentals of energy conversion
- Formation of air pollutants during combustion
- Technical measures to control emissions from fossil-fuel combustion processes
- External effects of energy supply (life cycle analyses of selected energy systems)
- Environmental communication on energy services (e.g. electricity labelling, carbon footprint)
- Integrated Assessment Modelling to support the European Clean Air Strategy
- Cost-effectiveness analyses and cost-benefit analyses for emission control strategies
- Monetary valuation of external effects (external costs)

Literature

Die Literaturhinweise sind in den Vorlesungsunterlagen enthalten (vgl. ILIAS)

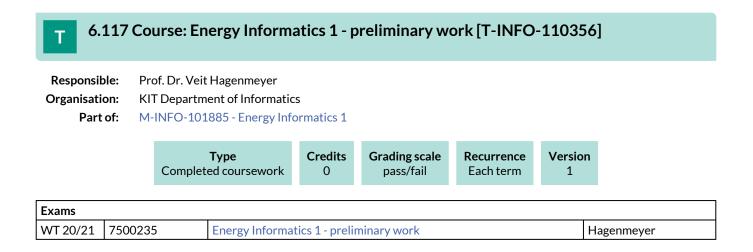
Lecture (V) Online

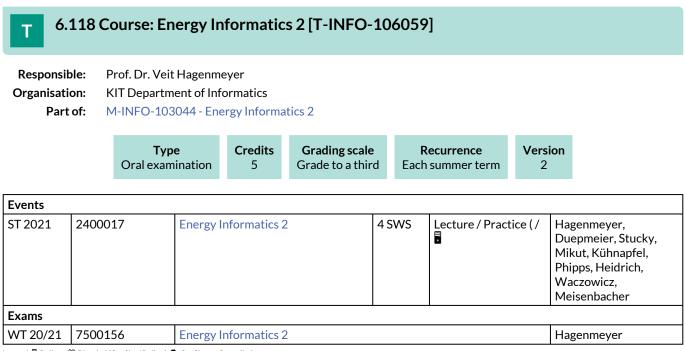
Energy Informatics 1

2400058, WS 20/21, 4 SWS, Language: German/English, Open in study portal

Lecture / Practice (VÜ) Online

Content


This module provides an overview of the physical and technical principles of different forms of energy, their storage, their transmission and the corresponding energy conversion processes. Furthermore, this module covers the system-technical combination of different local energy systems to form an overall energy system and provides an outlook on typical information technology applications in the energy sector.


In detail, the following topics are discussed with examples:

- Energy forms, systems and storage
- Energy conversion processes in power plants
- Renewable resources
- Energy transmission (electricity/gas/heat networks)
- Electrical networks of the future, load management
- Use of information and communication technology (ICT)
- Energy Economics

Literature

Diese werden in der Vorlesung gegeben.

Legend: \blacksquare Online, \clubsuit Blended (On-Site/Online), \clubsuit On-Site, imes Cancelled

1

6.119 Course: Energy Market Engineering [T-WIWI-107501]

4,5

Responsible:	Prof. Dr. Christof Weinhardt							
Organisation:	KIT Department of Economics and Management							
Part of:	M-WIWI-101446 - Market Engineering M-WIWI-101451 - Energy Economics and Energy Markets M-WIWI-103720 - eEnergy: Markets, Services and Systems M-WIWI-104813 - Information Systems: Internet-based Markets and Services							
	Туре	Credits	Grading scale	Recurrence	Version			

Events						
ST 2021	2540464	Energy Market Engineering	2 SWS	Lecture / 🖥	Staudt	
ST 2021	2540465	Übung zu Energy Market Engineering	1 SWS	Practice / 🖥	Staudt, Meinke	

Grade to a third

Each summer term

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Written examination

Competence Certificate

The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulations). By successful completion of the exercises (§4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites

None

Recommendation

None

Annotation

Former course title until summer term 2017: T-WIWI-102794 "eEnergy: Markets, Services, Systems".

The lecture has also been added in the IIP Module Basics of Liberalised Energy Markets.

Below you will find excerpts from events related to this course:

Energy Market Engineering

2540464, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Literature

- Erdmann G, Zweifel P. Energieökonomik, Theorie und Anwendungen. Berlin Heidelberg: Springer; 2007.
- Grimm V, Ockenfels A, Zoettl G. Strommarktdesign: Zur Ausgestaltung der Auktionsregeln an der EEX *. Zeitschrift für Energiewirtschaft. 2008:147-161.
- Stoft S. Power System Economics: Designing Markets for Electricity. IEEE; 2002.,
- Ströbele W, Pfaffenberger W, Heuterkes M. Energiewirtschaft: Einführung in Theorie und Politik. 2nd ed. München: Oldenbourg Verlag; 2010:349.

6.120 Course: Energy Networks and Regulation [T-WIWI-107503] Т Prof. Dr. Christof Weinhardt **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-101446 - Market Engineering M-WIWI-103720 - eEnergy: Markets, Services and Systems Credits **Grading scale** Recurrence Version Type Written examination 4,5 Grade to a third Each winter term 1 **Events** WT 20/21 2540494 **Energy Networks and Regulation** 2 SWS Lecture / Rogat, Huber

WT 20/21	2540495	Ubung zu Energy Networks and Regulation	1 SWS	Practice /	Rogat
Exams					
WT 20/21	7900198	Energy Networks and Regulation	Weinhardt		
WT 20/21	7900236	Energy Networks and Regulation			Weinhardt

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The exam is offered every semester. Re-examinations are offered on every ordinary examination date.

Prerequisites

None

Recommendation

None

Annotation

Former course title until summer term 2017: T-WIWI-103131 "Regulatory Management and Grid Management - Economic Efficiency of Network Operation"

Below you will find excerpts from events related to this course:

Energy Networks and Regulation

2540494, WS 20/21, 2 SWS, Open in study portal

Lecture (V) Online

Content

Learning Goals

The student,

- understands the business model of a network operator and knows its central tasks in the energy supply system,
- has a holistic overview of the interrelationships in the network economy,
- understands the regulatory and business interactions,
- is in particular familiar with the current model of incentive regulation with its essential components and understands its implications for the decisions of a network operator
- is able to analyse and assess controversial issues from the perspective of different stakeholders.

Content of teaching

The lecture "Energy Networks and Regulation" provides insights into the regulatory framework of electricity and gas. It touches upon the way the grids are operated and how regulation affects almost all grid activities. The lecture also addresses approaches of grid companies to cope with regulation on a managerial level. We analyze how the system influences managerial decisions and strategies such as investment or maintenance. Furthermore, we discuss how the system affects the operator's abilities to deal with the massive challenges lying ahead ("Energiewende", redispatch, European grid integration, electric vehicles etc.). Finally, we look at current developments and major upcoming challenges, e.g., the smart meter rollout. Covered topics include:

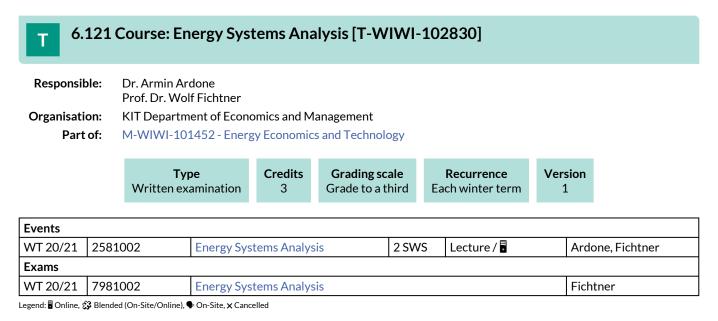
- Grid operation as a heterogeneous landscape: big vs. small, urban vs. rural, TSO vs. DSO
- Objectives of regulation: Fair price calculation and high standard access conditions
- The functioning of incentive regulation
- First major amendment to the incentive regulation: its merits, its flaws
- The revenue cap and how it is adjusted according to certain exogenous factors
- Grid tariffs: How are they calculated, what is the underlying rationale, do we need a reform (and which)?
- Exogenous costs shifted (arbitrarily?) into the grid, e.g. feed-in tariffs for renewable energy or decentralized supply.

Literature

Averch, H.; Johnson, L.L (1962). Behavior of the firm under regulatory constraint, in: American Economic Review, 52 (5), S. 1052 – 1069.

Bundesnetzagentur (2006): Bericht der Bundesnetzagentur nach § 112a EnWG zur Einführung der Anreizregulierung nach § 21a EnWG, http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/ Netzentgelte/Anreizregulierung/BerichtEinfuehrgAnreizregulierung.pdf?__blob=publicationFile&v=3.

Bundesnetzagentur (2015): Evaluierungsbericht nach § 33 Anreizregulierungsverordnung, https://www.bmwi.de/Redaktion/DE/ Downloads/A/anreizregulierungsverordnung-evaluierungsbericht.pdf?__blob=publicationFile&v=1.


Filippini, M.; Wild, J.; Luchsinger, C. (2001): Regulierung der Verteilnetzpreise zu Beginn der Marktöffnung. Erfahrungen in Norwegen und Schweden, Bundesamt für Energie, Bern, http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/ 34/066/34066585.pdf.

Gómez, T. (2013): Monopoly Regulation, in: Pérez-Arriaga, I.J. (Hg.): Regulation of the Power Sector, S. 151 – 198, Springer-Verlag, London.

Gómez, T. (2013): Electricity Distribution, in: Pérez-Arriaga, I.J. (Hg.): Regulation of the Power Sector, S. 199 – 250, Springer-Verlag, London.

Pérez-Arriaga, I.J. (2013): Challenges in Power Sector Regulation, in: Pérez-Arriaga, I.J. (Hg.): Regulation of the Power Sector, S. 647 – 678, Springer-Verlag, London.

Rivier, M.; Pérez-Arriaga, I.J.; Olmos, L. (2013): Electricity Transmission, in: Pérez-Arriaga, I.J. (Hg.): Regulation of the Power Sector, S. 251 – 340, Springer-Verlag, London.

Competence Certificate

The assessment consists of a written exam (60 minutes) (following \$4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following \$4(2), 3 of the examination regulation).

Prerequisites

None

Recommendation

None

Annotation

Since 2011 the lecture is offered in winter term. Exams can still be taken in summer term.

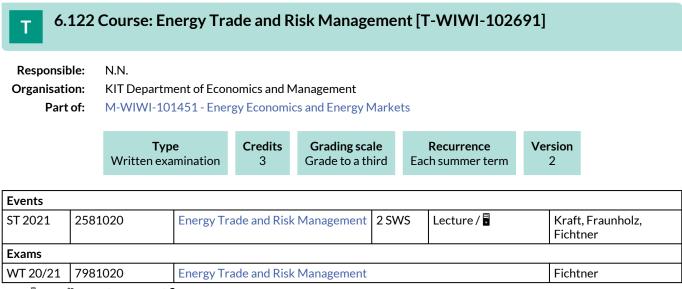
Below you will find excerpts from events related to this course:

Energy Systems Analysis

2581002, WS 20/21, 2 SWS, Language: English, Open in study portal

Content

- 1. Overview and classification of energy systems modelling approaches
- 2. Usage of scenario techniques for energy systems analysis
- 3. Unit commitment of power plants
- 4. Interdependencies in energy economics
- 5. Scenario-based decision making in the energy sector
- 6. Visualisation and GIS techniques for decision support in the energy sector


Learning goals:

The student

- has the ability to understand and critically reflect the methods of energy system analysis, the possibilities of its application in the energy industry and the limits and weaknesses of this approach
- can use select methods of the energy system analysis by her-/himself

Literature Weiterführende Literatur:

- Möst, D. und Fichtner, W.: **Einführung zur Energiesystemanalyse**, in: Möst, D., Fichtner, W. und Grunwald, A. (Hrsg.): Energiesystemanalyse, Universitätsverlag Karlsruhe, 2009
- Möst, D.; Fichtner, W.; Grunwald, A. (Hrsg.): **Energiesystemanalyse** Tagungsband des Workshops "Energiesystemanalyse" vom 27. November 2008 am KIT Zentrum Energie, Karlsruhe, Universitätsverlag Karlsruhe, 2009 [PDF: http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/928852]

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Energy Trade and Risk Management

2581020, SS 2021, 2 SWS, Language: German, Open in study portal

Content

- 1. Introduction to Markets, Mechanisms and Interaction
- 2. Electricity Trading (platforms, products, mechanisms)
- 3. Balancing Energy Markets and Congestion Management
- 4. Coal Markets (reserves, supply, demand, and transport)
- 5. Investments and Capacity Markets
- 6. Oil and Gas Markets (supply, demand, trade, and players)
- 7. Trading Game
- 8. Risk Management in Energy Trading

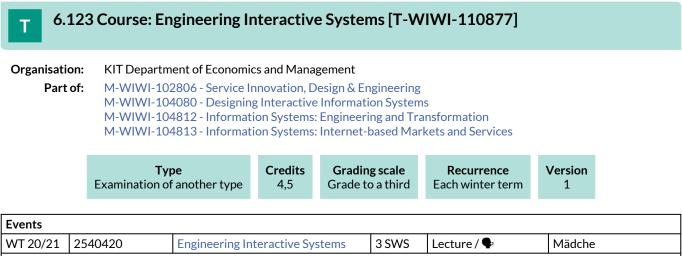
Organizational issues

Termine siehe Institutsaushang, freitags 14:00-15:30 Uhr

Literature

Weiterführende Literatur:

Burger, M., Graeber, B., Schindlmayr, G. (2007): Managing energy risk: An integrated view on power and other energy markets, Wiley&Sons, Chichester, England


EEX (2010): Einführung in den Börsenhandel an der EEX auf Xetra und Eurex, www.eex.de

Erdmann, G., Zweifel, P. (2008), Energieökonomik, Theorie und Anwendungen, Springer, ISBN: 978-3-540-71698-3

Hull, J.C. (2006): Options, Futures and other Derivatives, 6. Edition, Pearson Prentice Hall, New Jersey, USA

Borchert, J., Schlemm, R., Korth, S. (2006): Stromhandel: Institutionen, Marktmodelle, Pricing und Risikomanagement (Gebundene Ausgabe), Schäffer-Poeschel Verlag

www.riskglossary.com

Exams			
WT 20/21	7900210	Engineering Interactive Systems	Mädche
Legend Online	Blended (On-Site/Online)		

d: 🖥 Online, 🗱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment. The assessment consists of a one-hour exam and the implementation of a Capstone project. Details will be announced at the beginning of the course.

Prerequisites None

Recommendation None

Annotation The course is held in English.

Below you will find excerpts from events related to this course:

Engineering Interactive Systems 2540420, WS 20/21, 3 SWS, Language: English, Open in study portal Lecture (V) **On-Site**

Literature Siehe Englische Literatur

6.124 Course: Entrepreneurial Leadership & Innovation Management [T-WIWI-102833]

Responsible: Prof. Dr. Orestis Terzidis **Organisation:** KIT Department of Economics and Management Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon) M-WIWI-101488 - Entrepreneurship (EnTechnon) M-WIWI-101507 - Innovation Management Credits **Grading scale** Version Type Recurrence Grade to a third Examination of another type 3 Irregular 3

Competence Certificate

Please note: The seminar cannot be offered in the winter semester 2019/2020 due to organizational reasons. Alternative exam assessment.

Prerequisites

None

Recommendation None

Terzidis

Terzidis

6.125 Course: Entrepreneurship [T-WIWI-102864] Т Prof. Dr. Orestis Terzidis **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon) M-WIWI-101507 - Innovation Management Credits **Grading scale** Recurrence Version Туре Written examination 3 Grade to a third Each term 1 **Events** WT 20/21 2545001 Entrepreneurship 2 SWS Lecture / 🕄 Terzidis ST 2021 2545001 2 SWS Lecture / Terzidis Entrepreneurship Exams

WT 20/21 Entrepreneurship Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

7900045

7900229

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Entrepreneurship

Students are offered the opportunity to earn a grade bonus through separate assignments. If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade by a maximum of one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the lecture.

Prerequisites

WT 20/21

None

Recommendation

None

Below you will find excerpts from events related to this course:

Entrepreneurship

2545001, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Blended (On-Site/Online)

Content

The lecture as an obligatory part of the module "Entrepreneurship" introduces the basic concepts of entrepreneurship. Important concepts and empirical facts are presented that relate to the conception and implementation of newly founded companies. The focus here is on the introduction to methods for generating innovative business ideas, for transferring patents into business concepts and general principles of business modelling and business planning. In particular approaches such as Lean Startup and Effectuation as well as concepts for the financing of young enterprises are treated.

A "KIT Entrepreneurship Talk" is part of each session (from 17.00-18.00), in which young and experienced founder and entrepreneur personalities report on their experiences in practice of the establishment of an enterprise. Dates and speakers will be announced on the EnTechnon homepage.

Learning objectives:

The studentsare introduced to the topic Entrepreneurship. After successful attendance of the meeting they are to have an overview of the subranges of the Entrepreneurships and be able to understand basic concepts of the Entrepreneurships and apply key concepts.

Workload:

Total effort with 3 credit points: approx. 90 hours Presence time: 30 hours Pre- and postprocessing of the LV: 45.0 hours Exam and exam preparation: 15.0 hours

Examination:

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The examination date is the 17th of december, 2 to 3 p.m. (Location will be the tent in front of the audimax).

Due to the current situation special regulations will be necessary. We will provide further information on our website.

Organizational issues

wöchentliche Videos: 26.10. - 7.12. montags 16:30-17:00 Q&A, 17:00-18:00 Guest Talks

Literature

Aulet, Bill (2013): Disciplined Entrepreneurship. 24 Steps to a Successful Startup. Hoboken: Wiley.

R.C. Dorf, T.H. Byers: Technology Ventures - From Idea to Enterprise., (McGraw Hill 2008)

Hisrich, Robert D.; Ramadani, Veland (2017): Effective entrepreneurial management. Strategy, planning, risk management, and organization. Cham, Switzerland: Springer.

Ries, Eric (2011): The Lean Startup.

Osterwalder, Alexander (2010): Business Model Generation.

Entrepreneurship

2545001, SS 2021, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Literature

Füglistaller, Urs, Müller, Christoph und Volery, Thierry (2008): Entrepreneurship Ries, Eric (2011): The Lean Startup Osterwalder, Alexander (2010): Business Model Generation

6.126 Course: Entrepreneurship Research [T-WIWI-102894] Т Prof. Dr. Orestis Terzidis **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon) M-WIWI-101488 - Entrepreneurship (EnTechnon) Credits **Grading scale** Recurrence Version Туре Grade to a third Examination of another type 3 Each summer term 1 **Events** ST 2021 2545002 Entrepreneurship Research 2 SWS Seminar / Henn, Manthey, Terzidis Exams ST 2021 7900052 **Entrepreneurship Research** Terzidis Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The performance review is done via a so called other methods of performance review (term paper) (alternative exam assessment). The final grade is a result from both, the grade of the term paper and its presentation, as well as active participation during the seminar.

Prerequisites

None

Recommendation

None

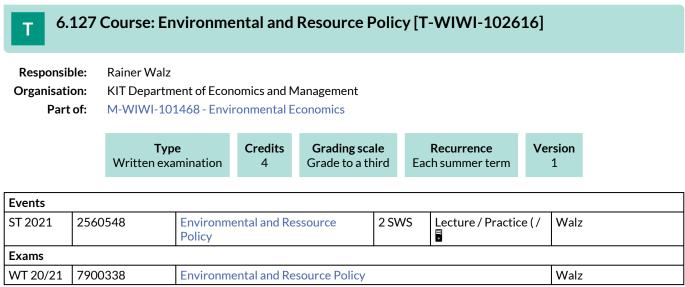
Annotation

The topics will be prepared in groups. The presentation of the results is done during a a block period seminar at the end of the semester. Students have to be present all day long during the seminar.

Below you will find excerpts from events related to this course:

Entrepreneurship Research

2545002, SS 2021, 2 SWS, Language: German, Open in study portal


Seminar (S) Online

Organizational issues

Block am 21.04., 05.05., 14.07.

Literature

Wird im Seminar bekannt gegeben.

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

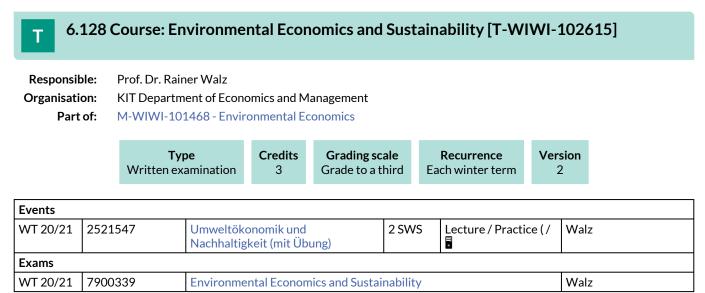
Competence Certificate

See German version

Recommendation

It is recommended to already have knowledge in the area of industrial organization and economic policy. This knowledge may be acquired in the courses *Introduction to Industrial Organization* [2520371] and *Economic Policy*[2560280].

Below you will find excerpts from events related to this course:


Environmental and Ressource Policy

2560548, SS 2021, 2 SWS, Language: German, Open in study portal

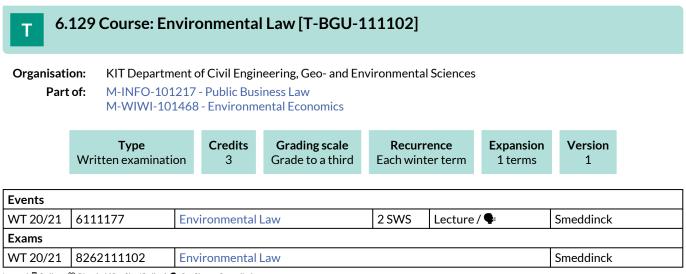
Lecture / Practice (VÜ) Online

Literature Weiterführende Literatur:

Michaelis, P.: Ökonomische Instrumente in der Umweltpolitik. Eine anwendungsorientierte Einführung, Heidelberg OECD: Environmental Performance Review Germany, Paris

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate


See German version

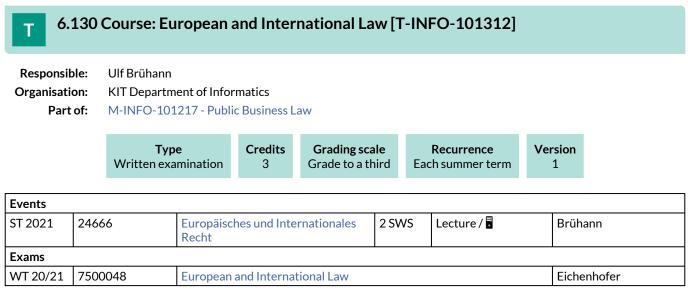
Prerequisites

None

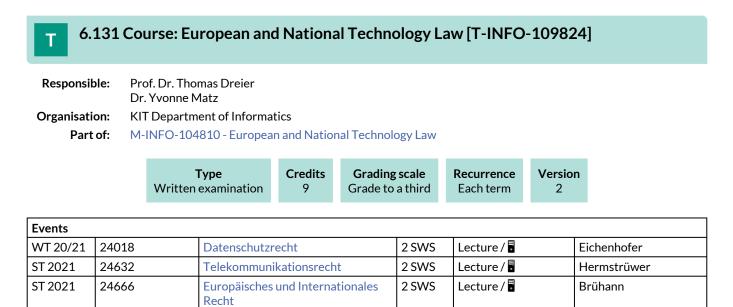
Recommendation

It is recommended to already have knowledge in the area of macro- and microeconomics. This knowledge may be acquired in the courses *Economics I: Microeconomics* [2600012] and *Economics II: Macroeconomics* [2600014].

Legend: 🖥 Online, 🗱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled


Competence Certificate

Written exam with 120 min


Prerequisites None

Annotation

None

Legend: Doline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.132 Course: Experimental Economics [T-WIWI-102614]

Responsible:	Prof. Dr. Christof Weinhardt
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101446 - Market Engineering
	M-WIWI-101453 - Applied Strategic Decisions
	M-WIWI-101505 - Experimental Economics
	M-WIWI-103118 - Data Science: Data-Driven User Modeling

Туре	Credits	Grading scale	Recurrence	Version
Written examination	4,5	Grade to a third	Each winter term	1

Events					
WT 20/21	2540489	Experimental Economics	2 SWS	Lecture /	Peukert, Knierim
WT 20/21	2540493	Übung zu Experimentelle Wirtschaftsforschung	1 SWS	Practice /	Greif-Winzrieth, Knierim, Peukert
Exams					
WT 20/21	7900178	Experimental Economics			Weinhardt
WT 20/21	7900194	Experimental Economics			Weinhardt

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulations). By successful completion of the exercises (§4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites

None

Below you will find excerpts from events related to this course:

Experimental Economics

2540489, WS 20/21, 2 SWS, Language: German, Open in study portal

Content

Experiments have become a valuable tool in Economics and Information Systems research. Nearly all fields of the economic discipline use experiments to verify theoretical predictions and to identify cause-effect relationships. Besides being used for empricial validation, this method is applied in political and strategic consulting. The lecture gives an introduction to experimental methods in Economics and in the Information Systems research domain, and shows differences to experiments in natural sciences. Scientific studies are used to show exemplary applications.

Literature

- Strategische Spiele; S. Berninghaus, K.-M. Ehrhart, W. Güth; Springer Verlag, 2. Aufl. 2006.
- Handbook of Experimental Economics; J. Kagel, A. Roth; Princeton University Press, 1995.
- Experiments in Economics; J.D. Hey; Blackwell Publishers, 1991.
- Experimental Economics; D.D. Davis, C.A. Holt; Princeton University Press, 1993.
- Experimental Methods: A Primer for Economists; D. Friedman, S. Sunder; Cambridge University Press, 1994.

6.133 Course: Extraordinary additional course in the module Cross-Functional Management Accounting [T-WIWI-108651]

Responsible: Prof. Dr. Marcus Wouters

Organisation:KIT Department of Economics and ManagementPart of:M-WIWI-101510 - Cross-Functional Management Accounting

Competence Certificate

The assessment depends on which extraordinary course becomes part of the module "Cross-Functional Management Accounting".

Prerequisites

None

Annotation

The pupose of this placeholder is to make it possible zu include an extraordinary course in the module "Cross-Functional Management Accounting". Proposals for specific courses have to be approved in advance by the module coordinator.

T 6.134 Course: Financial Analysis [T-WIWI-102900]

Responsible:Dr. Torsten LuedeckeOrganisation:KIT Department of Economics and ManagementPart of:M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2

Events					
ST 2021	2530205	Financial Analysis	2 SWS	Lecture / 🖥	Luedecke
ST 2021	2530206	Übungen zu Financial Analysis	2 SWS	Practice / 🖥	Luedecke
Exams					
WT 20/21	7900059	Financial Analysis			Luedecke, Ruckes

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

See German version.

Prerequisites

None

Recommendation

Basic knowledge in corporate finance, accounting, and valuation is required.

Below you will find excerpts from events related to this course:

Financial Analysis

2530205, SS 2021, 2 SWS, Language: English, Open in study portal

Literature

- Alexander, D. and C. Nobes (2017): Financial Accounting An International Introduction, 6th ed., Pearson.
- Penman, S.H. (2013): Financial Statement Analysis and Security Valuation, 5th ed., McGraw Hill.

6.135 Course: Financial Econometrics [T-WIWI-103064]

Responsible: Organisation: Part of:	KIT M- M-	rof. Dr. Melanie Schienle IT Department of Economics and Management 1-WIWI-101638 - Econometrics and Statistics I 1-WIWI-101639 - Econometrics and Statistics II 1-WIWI-105414 - Statistics and Econometrics II					
		Type Written examination	Credits 4,5	Grading scale Grade to a third	Recurrence Irregular	Version 2	

Competence Certificate

The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites

None

Recommendation

Knowledge of the contents covered by the course "Economics III: Introduction in Econometrics" [2520016]

Annotation

The course takes place each second summer term: 2018/2020....

Version

2

Recurrence

see Annotations

6.136 Course: Financial Econometrics II [T-WIWI-110939]

Responsible:	Prof. Dr. Melanie Schienle				
Organisation:	KIT Department of Economics and Management				
Part of:	M-WIWI-101638 - Econometrics and Statistics I M-WIWI-101639 - Econometrics and Statistics II M-WIWI-105414 - Statistics and Econometrics II				
	Туре	Credits	Grading scale		

Examination of another type

2521302	Financial Econometrics II	2 SWS	Lecture /	Schienle, Buse
2521303	Übung zu Financial Econometrics II	1 SWS	Practice / 🖥	Görgen, Buse, Schienle
7900274	Financial Econometrics II			Schienle
	2521303	2521303 Übung zu Financial Econometrics II	2521303 Übung zu Financial Econometrics II 1SWS	2521303 Übung zu Financial Econometrics II 1SWS Practice /

Grade to a third

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment (Takehome Exam). Details will be announced at the beginning of the course.

4,5

Prerequisites None

Recommendation

Knowledge of the contents covered by the course "Financial Econometrics"

Annotation

Course language is English

The course takes place each second winter term starting in WS2020/21

6.137 Course: Financial Intermediation [T-WIWI-102623]

Responsible:	Prof. Dr. Martin Ruckes
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101453 - Applied Strategic Decisions
	M-WIWI-101480 - Finance 3
	M-WIWI-101483 - Finance 2
	M-WIWI-101502 - Economic Theory and its Application in Finance

Туре	Credits	Grading scale	Recurrence	Version	
Written examination	4,5	Grade to a third	Each winter term	1	

Events					
WT 20/21	2530232	Financial Intermediation	2 SWS	Lecture / 🖥	Ruckes
WT 20/21	2530233	Übung zu Finanzintermediation	1 SWS	Practice /	Ruckes, Hoang, Benz
Exams					
WT 20/21	7900063	Financial Intermediation			Ruckes

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of this course is a written examination (following 4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Prerequisites None

Recommendation

None

Below you will find excerpts from events related to this course:

V

Financial Intermediation

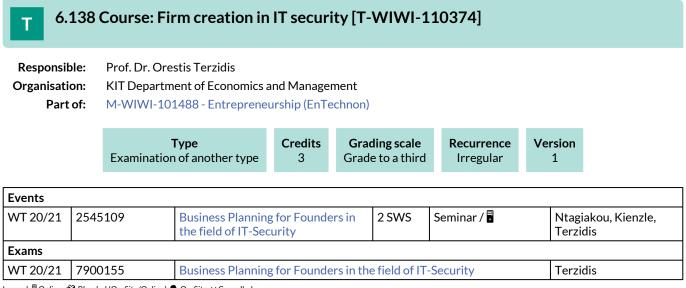
2530232, WS 20/21, 2 SWS, Language: German, Open in study portal

Content

The lecture covers the following topics:

- Arguments for the existence of financial intermediaries
- Bank loan analysis, relationship lending
- Stability of the financial system
- The macroeconomic role of financial intermediation
- Principles of the prudential regulation of banks

Learning outcomes: Students


- are in a position to describe the arguments for the existence of financial intermediaries,
- are able of discuss and analyze both static and dynamic aspects of contractual relationships between banks and borrowers,
 are able to discuss the macroeconomic role of the banking system,
- are in a position to explain the fundamental principles of the prudential regulation of banks and are able to recognize and evaluate the implications of specific regulations.

Workload:

The total workload for this course is approximately 135.0 hours. For further information see the German version.

Literature Weiterführende Literatur:

- Hartmann-Wendels/Pfingsten/Weber (2014): Bankbetriebslehre, 6. Auflage, Springer Verlag.
 Freixas/Rochet (2008): Microeconomics of Banking, 2. Auflage, MIT Press.

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment. The grade consists of the presentation and the written elaboration.

Prerequisites None

Below you will find excerpts from events related to this course:

Business Planning for Founders in the field of IT-Security 2545109, WS 20/21, 2 SWS, Language: German/English, Open in study portal Seminar (S) Online

Content

Information about the seminar:

The seminar will be conducted in Zoom. More information about the process will be availabe in ILIAS.

In the seminar you will work in groups of max. 4 persons. Group applications are welcome but not a prerequisite for participation.

Most of the seminars will be held in English.

The focus of the seminar is Opportunity Recognition in the field of IT-Security, followed by ideation sessions with the aim to find possible applications for Cyber Security technologies that are developed at the KIT. Prototyping and also Pitching are part of the seminar.

Target group:

Master Students

Information on the allocation of seminar places:

The registration for the seminar is possible in the Wiwi portal in the period from 09.08.2020 to 23.10.2020 at 23:59 o' clock. To apply for the seminar, please send us <u>a letter of motivation (max. 5 sentences)</u>.

Important Dates:

18.11.2020, 09:00-15:00

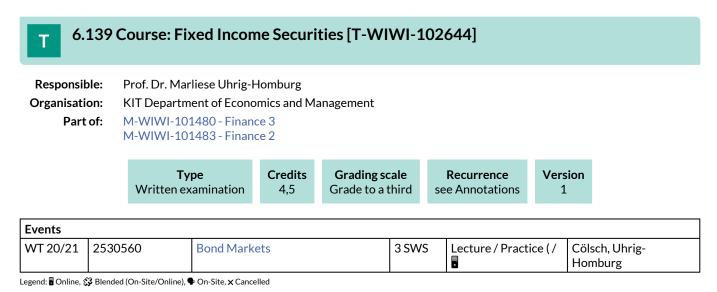
02.12.2020, 09:00-15:00

16.12.2020, 09:00-15:00

Deliverables:

Homework completed in the meantime among seminar days

Final presenation on 16.12.2020


Business Plan (7000 Words)

After completing this course, the course participants will be able to

- Characterize the specifications of Technology Push and Market Pull
- Describe why personal and team core values are important for team formation and how they can affect start-up projects.
- Develop a sound value proposition for a target customer
- Recognize Business Opportunities in the field of IT-Security applying the TAS Approach
- Learn the processes of **Design Thinking**
- Build a Prototype
- Create Business Ideas
- Pitch their Business Ideas to potential investors

Organizational issues

Blockveranstaltung im Rahmen des KASTEL Projekts

Competence Certificate

The examination is offered for first-time writers for the last time in the winter semester 2020/21 and (only) for repeaters in the summer semester 2021.

The assessment takes place in the form of a written examination (75 minutes) according to §4(2), 1 SPO. The examination takes place during the semester break. The examination is offered every semester and can be repeated at any regular examination date. A bonus can be acquired through successful participation in the excercises. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites

None

Recommendation

Knowledge from the course "Derivatives" is very helpful.

Annotation

The course will no longer be offered from winter semester 2020/21.

Below you will find excerpts from events related to this course:

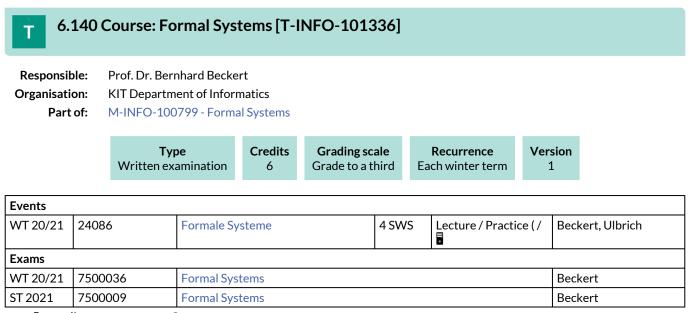
Bond Markets

2530560, WS 20/21, 3 SWS, Language: English, Open in study portal

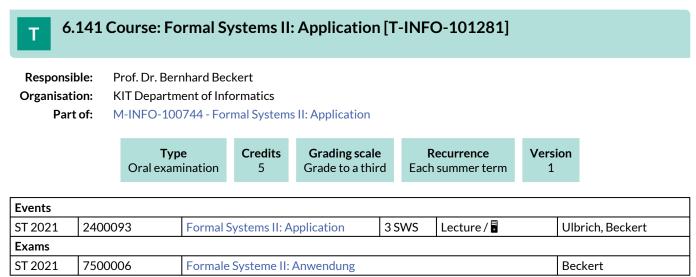
Lecture / Practice (VÜ) Online

Content

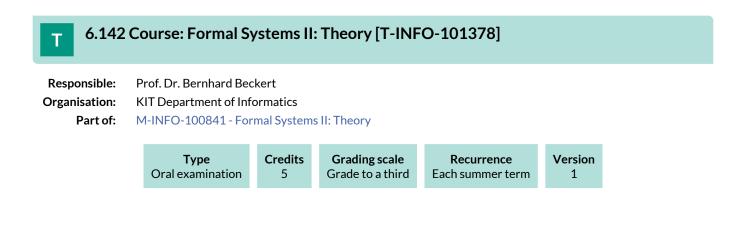
The lecture "Bond Markets" deals with the national and international bond markets, which are an important source of financing for companies, as well as for the public sector. After an overview of the most important bond markets, different yield definitions are discussed. Based on this, the concept of the yield curve is presented. In addition, the theoretical and empirical relationships between ratings, default probabilities and spreads are analyzed. The focus will then be on questions regarding the valuation, measurement, management and control of credit risks.


The total workload for this course is approximately 135 hours (4.5 credits).

The assessment consists of a written exam (75min.) (according to \$4(2), 1 SPO). A bonus can be earned through successful participation in the tutorial sessions. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one level (0.3 or 0.4). The examination is offered in each semester and can be repeated at any regular examination date.

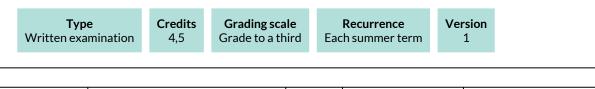

Students deepen their knowledge of national and international bond markets. They gain knowledge of the traded instruments and their key figures for describing default risk such as ratings, default probabilities or credit spreads.

Organizational issues


Blockveranstaltung: Do 14:00-19:00 Uhr, Fr 9:45-17:15 Uhr 05./06.11., 19./20.11., 03./04.12.20

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled



6.143 Course: Fundamentals of National and International Group Taxation [T-WIWI-111304]

Responsible: Prof. Dr. Berthold Wigger

Organisation: KIT Department of Economics and Management

Events					
ST 2021	2560133	Grundlagen der nationalen und internationalen Konzernbesteuerung	3 SWS	Lecture / 🖥	Wigger, Gutekunst

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Depending on the further pandemic development in the summer semester 2021 the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1.5h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites

None

Recommendation

It is recommended to attend the course "Basics of German Company Tax Law and Tax Planning" beforehand.

Lecture (V) Online

6.144 Course: Fuzzy Sets [T-INFO-101376]									
Responsible:Prof. DrIng. Uwe HanebeckOrganisation:KIT Department of InformaticsPart of:M-INFO-100839 - Fuzzy Sets									
		Typ Oral exam		Credits 6	Grading scale Grade to a thir		Recurrence n summer term	Versio 1	n
Events									
ST 2021	24611		Fuzzy Sets		3 SWS	Lecture /		Pfaff	
Exams									
WT 20/21	75000	11	Fuzzy Sets						Pfaff, Hanebeck
ST 2021	75000	01	Fuzzy Sets						Pfaff, Hanebeck

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Fuzzy Sets

24611, SS 2021, 3 SWS, Language: German, Open in study portal

Content

In this module, the fundamental theory and practical applications of fuzzy sets are communicated. The course copes with fuzzy arithmetics, fuzzy logic, fuzzy relations, and fuzzy deduction. The representation of fuzzy sets and their properties are the theoretical foundation. Based on this theory, arithmetic and logical operations are axiomatically derived and analyzed. Furthermore, it is shown how arbitrary functions and relations are transferred into fuzzy sets. An application of the logic part of the module, fuzzy deduction, shows different approaches to applying rule-based systems on fuzzy sets. The final part of the curse treats the problem of fuzzy control.

Literature

Hilfreiche Quellen werden im Skript und in den Vorlesungsfolien genannt.

6.145 Course: Geometric Optimzation [T-INFO-101267]

Responsible:Prof. Dr. Hartmut PrautzschOrganisation:KIT Department of InformaticsPart of:M-INFO-100730 - Geometric Optimization

Exams					
WT 20/21	7500050	Geometric Optimzation	Prautzsch		
ST 2021	7500230	Geometric Optimzation	Prautzsch		

6.146 Course: Global Optimization I [T-WIWI-102726] **Responsible:** Prof. Dr. Oliver Stein **Organisation:** KIT Department of Economics and Management Part of: M-WIWI-101473 - Mathematical Programming Type Credits **Grading scale** Recurrence Version Written examination 4,5 Grade to a third Each summer term 1 **Events** ST 2021 2 SWS Lecture / Stein 2550134 Globale Optimierung I

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Success is in the form of a written examination (60 min.) (according to § 4(2), 1 SPO). The successful completion of the exercises is required for admission to the written exam.

The exam is offered in the lecture of semester and the following semester.

The success check can be done also with the success control for "Global optimization II". In this case, the duration of the written exam is 120 min.

Prerequisites

None

Recommendation

None

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Globale Optimierung I

2550134, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify *local* optimizers, while it is much harder to find *globally* optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- Optimality in convex optimization
- Duality, bounds, and constraint qualifications
- Algorithms (Kelley's cutting plane method, Frank-Wolfe method, primal-dual interior point methods)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of *nonconvex* optimization problems forms the contents of the lecture "Global Optimization II". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively *in the same semester*.

Learning objectives:

The student

- knows and understands the fundamentals of deterministic global optimization in the convex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the convex case in practice.

Literature

O. Stein, Grundzüge der Globalen Optimierung, SpringerSpektrum, 2018.

Weiterführende Literatur:

- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
- R. Horst, H. Tuy, Global Optimization, Springer, 1996
- A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, 1990

6.147 Course: Global Optimization I and II [T-WIWI-103638]

Responsible:	Prof. Dr. Oliver Stein			
Organisation:	KIT Department of Economics and Management			
Part of:	M-WIWI-101473 - Mathematical Programming			

Туре	Credits	Grading scale	Recurrence	Version
Written examination	9	Grade to a third	Each summer term	1

Events						
ST 2021	2550134	Globale Optimierung I	2 SWS	Lecture / 🖥	Stein	
ST 2021	2550135	Übung zu Globale Optimierung I und II	2 SWS	Practice / 🖥	Stein, Schwarze, Beck	
ST 2021	2550136	Globale Optimierung II	2 SWS	Lecture /	Stein	

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of the lecture is a written examination (120 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.

The examination is held in the semester of the lecture and in the following semester.

Prerequisites

None

Recommendation

None

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Globale Optimierung I

2550134, SS 2021, 2 SWS, Language: German, Open in study portal

Content

In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify *local* optimizers, while it is much harder to find *globally* optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- Optimality in convex optimization
- Duality, bounds, and constraint qualifications
- · Algorithms (Kelley's cutting plane method, Frank-Wolfe method, primal-dual interior point methods)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of *nonconvex* optimization problems forms the contents of the lecture "Global Optimization II". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively in the same semester.

Learning objectives:

The student

- knows and understands the fundamentals of deterministic global optimization in the convex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the convex case in practice.

Literature

O. Stein, Grundzüge der Globalen Optimierung, SpringerSpektrum, 2018.

Weiterführende Literatur:

- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
- R. Horst, H. Tuy, Global Optimization, Springer, 1996
- A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, 1990

Globale Optimierung II

2550136, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify *local* optimizers, while it is much harder to find *globally* optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of nonconvex functions under nonconvex constraints. It is structured as follows:

- Introduction and examples
- Convex relaxation
- Interval arithmetic
- Convex relaxation via alphaBB method
- Branch-and-bound methods
- Lipschitz optimization

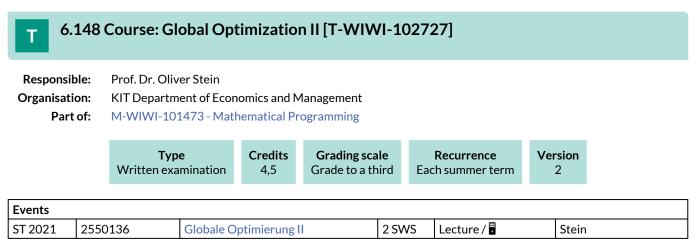
The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of *convex* optimization problems forms the contents of the lecture "Global Optimization I". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively *in the same semester*.

Learning objectives:

The student


- knows and understands the fundamentals of deterministic global optimization in the nonconvex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the nonconvex case in practice.

Literature

O. Stein, Grundzüge der Globalen Optimierung, SpringerSpektrum, 2018.

Weiterführende Literatur:

- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
- R. Horst, H. Tuy, Global Optimization, Springer, 1996
- A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, 1990

Legend: Bonline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.

The examination is held in the semester of the lecture and in the following semester.

The examination can also be combined with the examination of "Global optimization I". In this case, the duration of the written examination takes 120 minutes.

Prerequisites

None

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Globale Optimierung II

2550136, SS 2021, 2 SWS, Language: German, Open in study portal

Content

In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify *local* optimizers, while it is much harder to find *globally* optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of nonconvex functions under nonconvex constraints. It is structured as follows:

- Introduction and examples
- Convex relaxation
- Interval arithmetic
- Convex relaxation via alphaBB method
- Branch-and-bound methods
- Lipschitz optimization

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of *convex* optimization problems forms the contents of the lecture "Global Optimization I". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively *in the same semester*.

Learning objectives:

The student

- knows and understands the fundamentals of deterministic global optimization in the nonconvex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the nonconvex case in practice.

Literature

O. Stein, Grundzüge der Globalen Optimierung, SpringerSpektrum, 2018.

Weiterführende Literatur:

- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
- R. Horst, H. Tuy, Global Optimization, Springer, 1996
- A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, 1990

T 6.149 Course: Graph Partitioning and Graph Clustering in Theory and Practice [T-INFO-101295]

Responsible:Prof. Dr. Pet Dr. rer. nat.Organisation:KIT Departm Part of:M-INFO-100			orsten Ue ent of Info	ckerdt ormatics	ing and Graph Cl	ustering	in Theory and Pra	ctice	
		Typ e Oral exam		Credits 4	Grading scale Grade to a thir		Recurrence ch summer term	Version 2	
Events									
WT 20/21	24001	80		rtitioning ar	nd Graph and Practice	3 SWS	Lecture /		eckerdt, ottesbüren, Hamann
Exams								·	
WT 20/21	75001	45	Graph Pa	rtitioning ar	nd Graph Cluster	ring in Th	eory and Practice	U	eckerdt

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.150 Course: Graph Partitioning and Graph Clustering in Theory and Practice -Practical [T-INFO-110999]

		Гуре of another type			•	Recurrence Each summer term	Version 1	
Events								
WT 20/21	2400180		Graph Partitioning and Graph Clustering in Theory and Practice			Lecture / 🖥	Ueckerdt Gottesbü	t, iren, Hamann
Exams								
WT 20/21	7500287	Graph Partitio Practical	Graph Partitioning and Graph Clustering in Theory and Practice - Practical					İ

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Responsible: Organisation: Part of:	Prof. Dr. Stefan Nickel KIT Department of Economics and Management M-WIWI-101473 - Mathematical Programming M-WIWI-102832 - Operations Research in Supply Chain Management M-WIWI-103289 - Stochastic Optimization					
		Type Written examination	Credits 4,5	Grading scale Grade to a third	Recurrence Irregular	Version 2

Competence Certificate

The assessment is a 60 minutes written examination (according to §4(2), 1 of the examination regulation).

The examination is held in the term of the lecture and the following lecture.

Prerequisites

None

Recommendation

Basic knowledge as conveyed in the module "Introduction to Operations Research" is assumed.

Annotation

The course is offered irregularly. Planned lectures for the next three years can be found in the internet at http://dol.ior.kit.edu/english/Courses.php.

6.152 Course: Growth and Development [T-WIWI-111318] Т Prof. Dr. Ingrid Ott **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-101478 - Innovation and Growth M-WIWI-101496 - Growth and Agglomeration Credits **Grading scale** Recurrence Version Туре Grade to a third Each winter term Written examination 4,5 1

Events					
WT 20/21	2561503	Theory of endogenous growth	2 SWS	Lecture /	Ott, Scheidt
WT 20/21	2561504		1 SWS	Practice /	Ott, Eraydin

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 60minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Recommendation

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Annotation

Due to the research semester of Prof. Dr. Ingrid Ott, the course is not offered in the winter term 2018/19.

Below you will find excerpts from events related to this course:

V

Theory of endogenous growth 2561503, WS 20/21, 2 SWS, Language: German/English, Open in study portal Lecture (V) Online

Content

This course is intended as an introduction to the field of advanced macroeconomics with a special focus on economic growth. Lectures aim to deal with the theoretical foundations of exogenous and endogenous growth models. The importance of growth for nations and discussion of some (well-known) growth theories together with the role of innovation, human capital and environment will therefore be primary focuses of this course.

Learning objective:

Students shall be given the ability to understand, analyze and evaluate selected models of endogenous growth theory.

Course content:

- Intertemporal consumption decision
- Growth models with exogenous saving rates: Solow
- Growth models with endogenous saving rates: Ramsey
- Growth and environmental resources
- Basic models of endogenous growth
- Human capital and economic growth
- Modelling of technological progress
- Diversity Models
- Schumpeterian growth
- Directional technological progress
- Diffusion of technologies

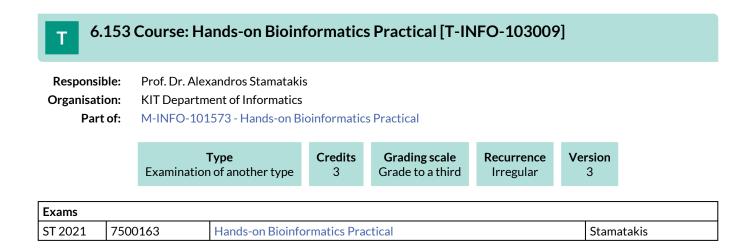
Recommendations:

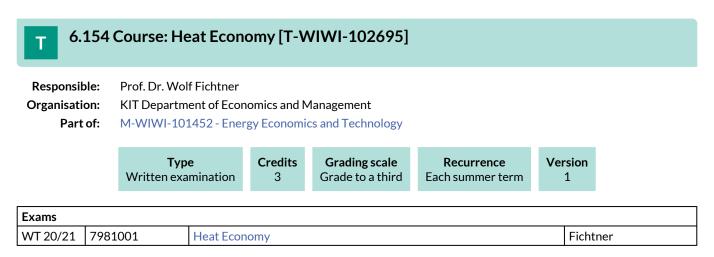
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Workload:

The total workload for this course is approximately 135.0 hours. For further information see German version.

Exam description:


The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.


Students will be given the opportunity of writing and presenting a short paper during the lecture time to achieve a bonus on the exam grade. If the mandatory credit point exam is passed, the awarded bonus points will be added to the regular exam points. A deterioration is not possible by definition, and a grade does not necessarily improve, but is very likely to (not every additional point improves the total number of points, since a grade can not become better than 1). The voluntary elaboration of such a paper can not countervail a fail in the exam.

Literature

Auszug:

- Acemoglu, D. (2009): Introduction to modern economic growth. Princeton University Press, New Jersey.
- Aghion, P., Howitt, P. (2009): Economics of growth, MIT-Press, Cambridge/MA.
- Barro, R.J., Sala-I-Martin, X. (2003): Economic Growth. MIT-Press, Cambridge/MA.
- Sydsaeter, K., Hammond, P. (2008): Essential mathematics for economic analysis. Prentice Hall International, Harlow.
- Sydsæter, K., Hammond, P., Seierstad, A., Strom, A., (2008): Further Mathematics for Economic Analysis, Second Edition, Pearson Education Limited, Essex.

Competence Certificate


The lecture will be suspended in summer semester 2021.

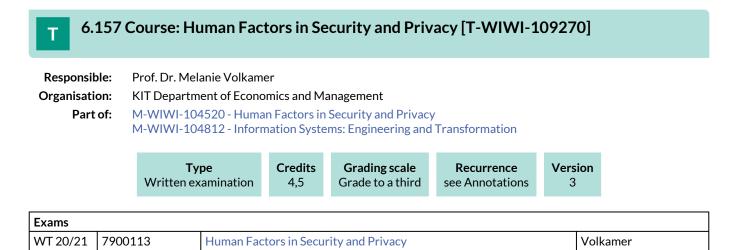
The assessment consists of a written (60 minutes) or oral exam (30 minutes) (following 4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following 4(2), 3 of the examination regulation).

Prerequisites None.

Recommendation None

Annotation See German version.

Legend: Doline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled


6.156 Course: Human Brain and Central Nervous System: Anatomy, Information Transfer, Signal Processing, Neurophysiology and Therapy [T-INFO-101262]

Responsible:	Prof. DrIng. Tamim Asfour HonProf. Dr. Uwe Spetzger
Organisation:	KIT Department of Informatics
Part of:	M-INFO-100725 - Human Brain and Central Nervous System: Anatomy, Information Transfer, Signal Processing, Neurophysiology and Therapy

Type Written examination

Events							
WT 20/21	24139	Human Brain and Central Nervous System: Anatomy, Information Transfer, Signal Processing, Neurophysiology and Therapy	2 SWS	Lecture /	Spetzger		
ST 2021	24678	Human Brain and Central Nervous System: Anatomy, Information Transfer, Signal Processing, Neurophysiology and Therapy	System: Anatomy, Information Transfer, Signal Processing,				
Exams							
WT 20/21	7500118		Human Brain and Central Nervous System: Snatomy, Information Transfer, Signal Processing, Neurophysiology and Therapy				
ST 2021	7500145		Human Brain and Central Nervous System: Anatomy, Information Transfer, Signal Processing, Neurophysiology and Therapy				

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

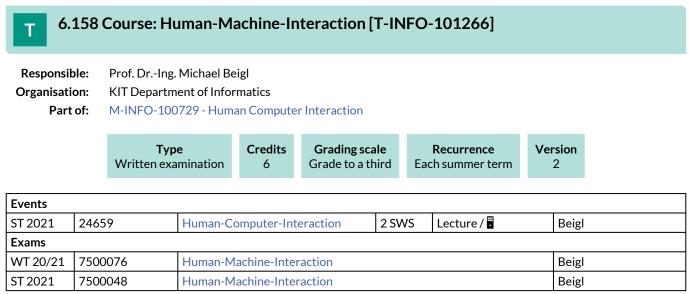
Competence Certificate

The assessment of this course is a written examination (60 min) according to \$4(2), 1 of the examination regulation or an oral exam (30 min) following \$4, Abs. 2, 2 of the examination regulation. Only those who have successfully participated in the exercises and the lecture will be admitted to the examination.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

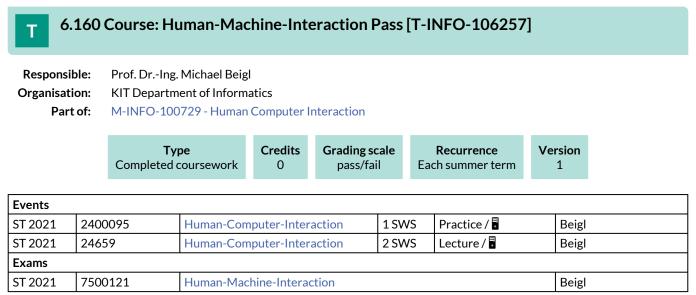
- 1. Successful participation in the exercises. Successful means actively participating in the tasks and its discussions. One task may be missed.
- 2. Also participation in the lectures is required. One lecture may be missed.

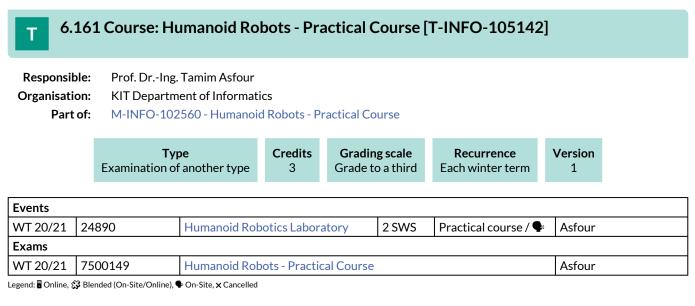

Recommendation

The prior attendance of the lecture "Information Security" is strongly recommended.

Annotation

The lecture will not be offered in winter semester 2020/21.


Some lectures are in English, some in German.


Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.159 Course: Human-Machine-Interaction in Anthropomatics: Basics [T-Т INFO-101361] **Responsible:** Prof. Dr.-Ing. Jürgen Beyerer Dr. Jürgen Geisler **Organisation: KIT Department of Informatics** Part of: M-INFO-100824 - Human-Machine-Interaction in Anthropomatics: Basics Type Credits **Grading scale** Recurrence Version Written examination 3 Grade to a third Each winter term 2 **Events** WT 20/21 Lecture / 🕄 24100 2 SWS Human-Machine-Interaction in Geisler Anthropomatics: Basics Exams WT 20/21 7500017 Human-Machine-Interaction in Anthropomatics: Basics Beyerer, Geisler ST 2021 7500005 Human-Machine-Interaction in Anthropomatics: Basics Beyerer, Geisler

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Humanoid Robotics Laboratory

	24890, WS 20/21, 2 SWS, Language: German, Open in study portal	
--	--	--

Practical course (P) On-Site

Content

In this block course, a complex task will be implemented in a small team. The exercise addresses algorithmic questions in the context of humanoid robotics, such as active perception with stereo or depth cameras, grasping and manipulation planning, action representation with DMS, HMMs or splines, reproduction of motions, or active balancing with humanoid robots.

Learning Objectives:

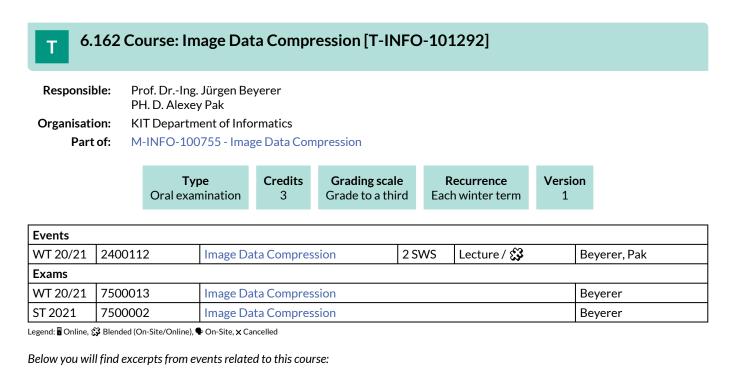
The participant understands and knows how to address and structure a complex task in the context of humanoid robotics. The student is able to solve a complex programming task in a small team.

Should have attended the robotics lectures.

Basic knowledge about C/C++

Organizational issues

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO.


Die Modulnote ist die Note der mündlichen Prüfung.

Zielgruppe: Das Praktikum richtet sich an Studierende der Informatik, Elektrotechnik, Maschinenbau, Mechatronik im Masterstudium sowie alle Interessenten an der Robotik.

Arbeitsaufwand: 90 h

Beschreibung:

Das Praktikum "Humanoide Roboter" wird als begleitende Veranstaltung zu der Vorlesung "Anthropomatik: Humanoide Robotik" angeboten. Die Grundlagen aus der Vorlesung werden in dieser Veranstaltung praktisch angewendet. Das Praktikum kann mit 2 SWS / 3 ECTS angerechnet werden. Dabei wird in jeder Woche ein anderer Versuch im Team bearbeitet. Die Versuche beinhalten vielseitige Themen, wie zum Beispieldie Simulation und Programmierung humanoider Roboter sowie Arbeiten mit Human Motion Capture. Das Praktikum richtet sich an Studierende der Informatik, Elektrotechnik, Maschinenbau, Mechatronik im Masterstudium sowie alle Interessenten an der Robotik.

V

Image Data Compression

2400112, WS 20/21, 2 SWS, Open in study portal

Lecture (V) Blended (On-Site/Online)

Content

This module conveys to the students the theoretical and practical aspects of the principal stages in image data acquisition and compression. The discussion progresses from the coding of un-correlated sequential data streams to de-correlation of natural 2D images and to exploitation of temporal correlations in video data coding. Each considered technique is provided with a statistical justification and characterised with basic information-theoretic metrics.

In the end of the class, an outlook is given to non-conventional image-based information coding schemes (watermarking and steganography).

Educational objective:

The students will learn various kinds, sources, and uses of image-type data, and the forms of their compression. Students master the basic concepts of information theory, related to data communication and coding. Based on these concepts and general principles and characterization criteria, students are able to compare various schemes of image data representation and coding. Students have in-depth knowledge of a few selected algorithms of entropy coding, pre-coding, and 1D-signal de-correlation.

Students know 2D transform-based de-correlation methods, including Discrete Fourier Transform, Discrete Cosine Transform, Walsh-Hadamard Transform, and the Discrete Wavelet Transform and know how to use them in video coding by exploitation of temporal correlations.

Students understand the human visual system and the statistics of natural images. In addition, the students know two nonstandard applications of image data coding: digital watermarking and steganography. As an exercise, students analyze several simple steganographic schemes.

Organizational issues

Corona-bedingt ist die maximale Anzahl an Studierenden, die in den einzelnen Räumen zugelassen werden dürfen, limitiert.

Daher müssen Sie sich online anmelden, sofern Sie an der Präsenz-Vorlesung teilnehmen möchten.

Bitte melden Sie sich außerdem per Email an: alexey.pak@iosb.fraunhofer.de

6.163 Course: Incentives in Organizations [T-WIWI-105781]

Responsible:	Prof. Dr. Petra Nieken
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101453 - Applied Strategic Decisions M-WIWI-101500 - Microeconomic Theory M-WIWI-101505 - Experimental Economics M-WIWI-101510 - Cross-Functional Management Accounting

Туре	Credits	Grading scale	Recurrence	Version	
Written examination	4,5	Grade to a third	Each summer term	1	

Events						
ST 2021	2573003	Incentives in Organizations	2 SWS	Lecture /	Nieken	
ST 2021	2573004	Übung zu Incentives in Organizations	•			
Exams						
WT 20/21	7900201	Incentives in Organizations	Incentives in Organizations			

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of this course is a written examination (60 min). The exam takesplace in every semester. Re-examinations are offered at every ordinary examination date. In case of a small number of registrations, we might offer an oral exam instead of a written exam.

Prerequisites

None

Recommendation

Knowledge of microeconomics, game theory, and statistics is assumed.

Below you will find excerpts from events related to this course:

Incentives in Organizations

2573003, SS 2021, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

The students acquire profound knowledge about the design and the impact of different incentive and compensation systems. Topics covered are, for instance, performance based compensation, team work, intrinsic motivation, multitasking, and subjective performance evaluations. We will use microeconomic or behavioral models as well as empirical data to analyze incentive systems. We will investigate several widely used compensation schemes and their relationship with corporate strategy. Students will learn to develop practical implications which are based on the acquired knowledge of this course.

Aim

The student

- develops a strategic understanding about incentives systems and how they work.
- analyzes models from personnel economics.
- understands how econometric methods can be used to analyze performance and compensation data.
- knows incentive schemes that are used in companies and is able to evaluate them critically.
- can develop practical implications which are based on theoretical models and empirical data from companies.
- understands the challenges of managing incentive and compensation systems and their relationship with corporate strategy.

Workload

The total workload for this course is: approximately 135 hours.

Lecture: 32 hours

Preparation of lecture: 52 hours

Exam preparation: 51 hours

Literature

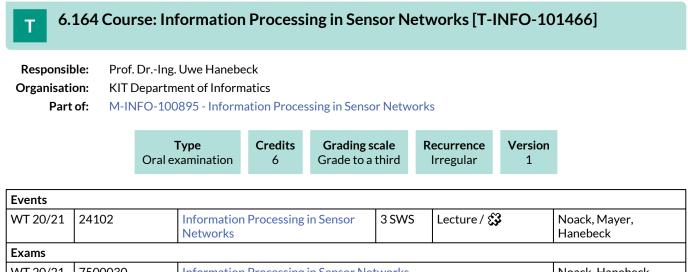
Slides, Additional case studies and research papers will be announced in the lecture.

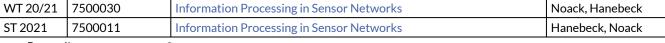
Literature (complementary):

Managerial Economics and Organizantional Architecture, Brickley / Smith / Zimmerman, McGraw-Hill Education, 2015

Behavioral Game Theory, Camerer, Russel Sage Foundation, 2003

Personnel Economics in Practice, Lazear / Gibbs, Wiley, 2014


Introduction to Econometrics, Wooldridge, Andover, 2014


Econometric Analysis of Cross Section and Panel Data, Wooldridge, MIT Press, 2010

Organizational issues

Die Vorlesungsinhalte sind als Aufzeichnungen verfügbar. An ausgewählten Vorlesungsterminen gibt es Live-Sessions. Diese werden zum Vorlesungsstart bekannt gegeben.

There are recordings of the lecture contents. There will be live sessions on selected lecture dates. These will be announced at the start of the lecture time.

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.165 Course: Information Service Engineering [T-WIWI-106423] Т **Responsible:** Prof. Dr. Harald Sack Organisation: KIT Department of Economics and Management Part of: M-WIWI-101456 - Intelligent Systems and Services Type Credits **Grading scale** Recurrence Version Written examination 4,5 Grade to a third Each summer term 2 **Events** ST 2021 2 SWS Lecture / Sack 2511606 Information Service Engineering ST 2021 1 SWS Practice / 2511607 **Exercises to Information Service** Sack Engineering Exams WT 20/21 7900071 Information Service Engineering (Registration until 08 February 2021) Sack ST 2021 7900070 Information Service Engineering (Registration until 12 July 2021) Sack

Legend: 🖥 Online, 🚯 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None

Below you will find excerpts from events related to this course:

Information Service Engineering

2511606, SS 2021, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

- Information, Natural Language and the Web
- Natural Language Processing
 - NLP and Basic Linguistic Knowledge
 - NLP Applications, Techniques & Challenges
 - Evaluation, Precision and Recall
 - Regular Expressions and Automata
 - Tokenization
 - Language Model and N-Grams
 - Part-of-Speech Tagging

- Knowledge Graphs

- Knowledge Representations and Ontologies
- Resource Description Framework (RDF) as simple Data Model
- Creating new Models with RDFS
- Querying RDF(S) with SPARQL
- More Expressivity via Web Ontology Language (OWL)
- From Linked Data to Knowledge Graphs
- Wikipedia, DBpedia, and Wikidata
- Knowledge Graph Programming

- Basic Machine Learning

- Machine Learning Fundamentals
- Evaluation and Generalization Problems
- Linear Regression
- Decision Trees
- Unsupervised Learning
- Neural Networks and Deep Learning

- ISE Applications

- From Data to Knowledge
- Data Mining, Information Visualization and Knowledge Discovery
- Semantic Search
- Exploratory Search
- Semantic Recommender Systems

Learning objectives:

- The students know the fundamentals and measures of information theory and are able to apply those in the context of Information Service Engineering.
- The students have basic skills of natural language processing and are enabled to apply natural language processing technology to solve and evaluate simple text analysis tasks.
- The students have fundamental skills of knowledge representation with ontologies as well as basic knowledge of Semantic Web and Linked Data technologies. The students are able to apply these skills for simple representation and analysis tasks.
- The students have fundamental skills of information retrieval and are enabled to conduct and to evaluate simple information retrieval tasks.
- The students apply their skills of natural language processing, Linked Data engineering, and Information Retrieval to conduct and evaluate simple knowledge mining tasks.
- The students know the fundamentals of recommender systems as well as of semantic and exploratory search.

Literature

- D. Jurafsky, J.H. Martin, Speech and Language Processing, 2nd ed. Pearson Int., 2009.
- S. Hitzler, S. Rudolph, Foundations of Semantic Web Technologies, Chapman / Hall, 2009.
- R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval, 2nd ed., Addison Wesley, 2010.
- S. Marsland, Machine Learning An Algorithmic Perspective, 2nd ed., CRC Press, 2015

6.166 Course: Innovation Management: Concepts, Strategies and Methods [T-WIWI-102893]

Respons Organisat Par		Prof. Dr. Marion Weissenberger-Eibl KIT Department of Economics and Management M-WIWI-101488 - Entrepreneurship (EnTechnon) M-WIWI-101507 - Innovation Management							
		Typ Written exa		Credits 3	Grading sca Grade to a th		Recurrence ich summer term	Versio 1	on
Events									
ST 2021	2545	5100	Innovation Management: Concepts, Strategies and Methods		2 SWS	Lecture /	W	Veissenberger-Eibl	

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes). The exam takes place in every summer semester. Re-examinations are offered at every ordinary examination date.

Prerequisites None

Recommendation

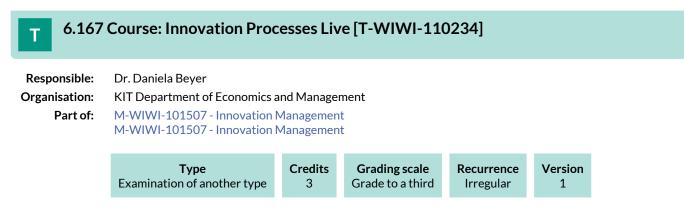
Below you will find excerpts from events related to this course:

	Innovation Management: Concepts, Strategies and Methods	Lecture (V)
V	2545100, SS 2021, 2 SWS, Language: German, Open in study portal	Online

Content

The course 'Innovation Management: Concepts, Strategies and Methods' offers scientific concepts which facilitate the understanding of the different phases of the innovation process and resulting strategies and appropriate methodologies suitable for application. The concepts refer to the entire innovation process so that an integrated perspective is made possible. This is the basis for the teaching of strategies and methods which fulfil the diverse demands of the complex innovation process. The course focuses particularly on the creation of interfaces between departments and between various actors in a company's environment and the organisation of a company's internal procedures. In this context a basic understanding of knowledge and communication is taught in addition to the specific characteristics of the respective actors. Subsequently methods are shown which are suitable for the profitable and innovation-led implementation of integrated knowledge.

Aim: Students develop a differentiated understanding of the different phases and concepts of the innovation process, different strategies and methods in innovation management.


Organizational issues

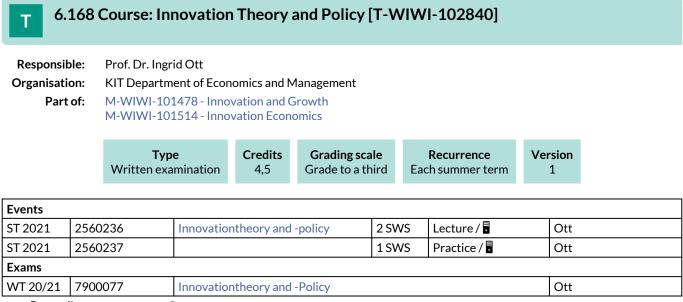
Die Vorlesung wird als interaktive online Veranstaltung durchgeführt. Die Vorlesung startet am 15.04.2021 und findet donnerstags 10:00-11:30 Uhr statt. Wichtig! Bitte treten Sie dem ILIAS-Kurs zur Vorlesung bei, damit wir Ihnen weitere Informationen mittteilen können.

Literature

Eine ausführliche Literaturliste wird mit den Vorlesungsunterlagen zur Verfügung gestellt.

Eine Einführung bei: Vahs,D./Brem,A. (2013): Innovationsmanagement. Von der Idee zur erfolgreichen Vermarktung, 4. Auflage, Stuttgart 2013.

Competence Certificate


Alternative exam assessments (§4(2), 3 SPO). The grade consists of an exposé (15%), a guideline interview or an analysis tool (25%), a group presentation of the results (20%) and a seminar paper (40%).

Prerequisites None.

NUTIE.

Recommendation

Prior attendance of the course Innovation Management [2545015] is recommended.

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 60minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Recommendation

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Below you will find excerpts from events related to this course:

V In

Innovation theory and -policy 2560236, SS 2021, 2 SWS, Language: German/English, Open in study portal Lecture (V) Online

Content

Learning objectives:

Students shall be given the ability to

- identify the importance of alternative incentive mechanisms for the emergence and dissemination of innovations
- understand the relationships between market structure and the development of innovation
- explain, in which situations market interventions by the state, for example taxes and subsidies, can be legitimized, and evaluate them in the light of economic welfare

Course content:

The course covers the following topics:

- Incentives for the emergence of innovations
- Patents
- Diffusion
- Impact of technological progress
- Innovation Policy

Recommendations:

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Workload:

The total workload for this course is approximately 135.0 hours. For further information see German version.

Exam description:

The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

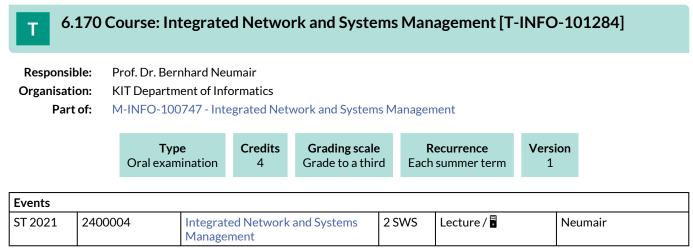
Students will be given the opportunity of writing and presenting a short paper during the lecture time to achieve a bonus on the exam grade. If the mandatory credit point exam is passed, the awarded bonus points will be added to the regular exam points. A deterioration is not possible by definition, and a grade does not necessarily improve, but is very likely to (not every additional point improves the total number of points, since a grade can not become better than 1). The voluntary elaboration of such a paper can not countervail a fail in the exam.

Literature

Auszug:

- Aghion, P., Howitt, P. (2009), The Economics of Growth, MIT Press, Cambridge MA.
- de la Fuente, A. (2000), Mathematical Methods and Models for Economists. Cambridge University Press, Cambridge, UK.
- Klodt, H. (1995), Grundlagen der Forschungs- und Technologiepolitik. Vahlen, München.
- Linde, R. (2000), Allokation, Wettbewerb, Verteilung Theorie, UNIBUCH Verlag, Lüneburg.
- Ruttan, V. W. (2001), Technology, Growth, and Development. Oxford University Press, Oxford.
- Scotchmer, S. (2004), Incentives and Innovation, MIT Press.
- Tirole, Jean (1988), The Theory of Industrial Organization, MIT Press, Cambridge MA.

6.169 Course: Innovative Concepts for Programming Industrial Robots [T-INFO-101328]


Responsible:Prof. Dr.-Ing. Björn HeinOrganisation:KIT Department of InformaticsPart of:M-INFO-100791 - Innovative O

M-INFO-100791 - Innovative Concepts for Programming Industrial Robots

Events						
WT 20/21		Innovative Concepts for Programming Industrial Robots	2 SWS	Lecture / 🖥	Hein	
Exams						
WT 20/21 750001 Innovative Concepts for programming Industrial Robots Hein					Hein	

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.171 Course: Intelligent Agent Architectures [T-WIWI-111267]

Responsible:	sible: Prof. Dr. Andreas Geyer-Schulz							
Organisation:	KIT Department of Economics and Management							
Part of:	M-WIWI-104814 - Information Systems: Analytical and Interactive Systems M-WIWI-105661 - Data Science: Intelligent, Adaptive, and Learning Information Services							

Туре	Credits	Grading scale	Recurrence	Version
Written examination	4,5	Grade to a third	Each winter term	1

Events						
WT 20/21	2540525	Intelligent Agent Architectures	2 SWS	Lecture / 🖥	Geyer-Schulz	
WT 20/21	2540526	Übung zu Intelligent Agent Architectures	1 SWS	Practice	Nazemi	
Exams						
WT 20/21	79011480	Intelligent CRM Architectures Geyer-Schulz			Geyer-Schulz	

Legend: 🖥 Online, 🗱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

None

Recommendation

It is recommended to additionally review the Bachelor-level lecture "Customer Relationship Management" from the module "CRM and Servicemanagement".

Below you will find excerpts from events related to this course:

Intelligent Agent Architectures

2540525, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

Course content:

The lecture is structured in three parts:

In the first part the methods used for architecture design are introduced (system analysis, UML, formal specification of interfaces, software and analysis patterns, and the separation in conceptual and IT-architectures. The second part is dedicated to learning architectures and machine learning methods. The third part presents examples of learning CRM-Architectures.

Workload:

The total workload for this course is approximately 135 hours (4.5 credits):

Time of attendance

- Attending the lecture: 15 x 90min = 22h 30m
- Attending the exercise classes: 7 x 90min = 10h 30m
- Examination: 1h 00m

Self-study

- Preparation and wrap-up of the lecture: 15 x 180min = 45h 00m
- Preparing the exercises: 25h 00m
- Preparation of the examination: 31h 00m

Sum: 135h 00m

Learning Goals:

Students have special knowledge of software architectures and of the methods which are used in their development (Systems analysis, formal methods for the specification of interfaces and algebraic semantic, UML, and, last but not least, the mapping of conceptual architectures to IT architectures.

Students know important architectural patterns and they can – based on their CRM knowledge – combine these patterns for innovative CRM applications.

Assessment:

The assessment consists of a written exam of 1-hour length following (2), 1 of the examination regulation and by submitting written papers as part of the exercise following (2), 3 of the examination regulation.

The course is considered successfully taken if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 10) from exercise work will be added.

Grade: Minimum points

- 1,0:95
- 1,3:90
- 1,7:85
- 2,0:80
- 2,3:75
- 2,7:70
- 3,0:65
- 3,3:60
- 3,7:554,0:50
- 4,0: 50
 5,0: 0

The grade consists of approximately 91% of exam points and 9% of exercise points.

Literature

- P. Clements u. a., Documenting Software Architectures. Views and Beyond. Upper Saddle River: Addison-Wesley, 2011.
- Fowler, Patterns of Enterprise Application Architecture. Amsterdam: Addison-Wesley Longman, 2002.
- S. Russell und P. Norvig, Artificial Intelligence: A Modern Approach, 3. Aufl. Harlow Essex England: Pearson New International Edition, 2014.
- V. N. Vapnik, The Nature of Statistical Learning Theory. New York: Springer, 1995.

6.172 Course: Intelligent Agents and Decision Theory [T-WIWI-110915] Т **Responsible:** Prof. Dr. Andreas Geyer-Schulz **Organisation:** KIT Department of Economics and Management Part of: M-WIWI-104814 - Information Systems: Analytical and Interactive Systems M-WIWI-105661 - Data Science: Intelligent, Adaptive, and Learning Information Services Credits **Grading scale** Version Type Recurrence Grade to a third Written examination 4,5 Each summer term 1 **Events**

ST 2021	2540537	Intelligent Agents and Decision Theory		Lecture /	Geyer-Schulz
ST 2021	2540538	Übung zu Intelligent Agents and Decision Theory	1 SWS	Practice / 🖥	Schweizer
Exams					
WT 20/21	7900341	Intelligent Agents and Decision Theory			Geyer-Schulz

Legend: Doline, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Oral (30 minutes) or written examination (60 minutes). The exam is held in each semester and can be repeated at any regular examination date. Details of the grading system and any exam bonus that may be achieved from the practice are announced in the course.

Prerequisites

None

Recommendation

We assume knowledge in statistics, operations research and microeconomics as taught in the Bachelor program (VWL I, Operations Research I + II, Statistics I + II) and a familiarity with preferably the Python programming language.

Annotation

new lecture starting summer semester 2020

Below you will find excerpts from events related to this course:

Intelligent Agents and Decision Theory

2540537, SS 2021, SWS, Language: English, Open in study portal

Lecture (V) Online

Content

The key assumption of this lecture is that the concept of artificial intelligence is inseparably linked to the economic concept of rationality of agents. We consider different classes of decision problems - decisions under certainty, risk and uncertainty - from an economic, managerial and AI-engineering perspective:

From an economic point of view, we analyze how to act rationally in these situations based on classic utility theory. In this regard, the course also introduces the relevant parts of decision theory for dealing with

- multiple conflicting objectives,
- incomplete, risky and uncertain information about the world,
- assessing utility functions, and
- quantifying the value of information ...

From an engineering perspective, we discuss how to develop practical solutions for these decision problems, using appropriate AI components. We introduce

• a general, agent-based design framework for AI systems,

as well as AI methods from the fields of

- search (for decisions under certainty),
- inference (for decions under risk) and
- learning (for decisions under uncertainty).

Where applicable, the course highlights the theoretical ties of these methods with decision theory.

We conclude with a discussion of ethical and philosophical issues concerning the development and use of AI.

Learning objectives

Students are able to design, analyze, implement, and evaluate intelligent agents.

Lecture Outline

- 1. Introduction: Artificial intelligence and the economic concept of rationality
- 2. Intelligent Agents: A general, agent-based design framework for AI systems
- 3. Decision under certainty: Assessing utility functions for decisions with multiple objectives
- 4. Search: Linear programming for decisions under certainty
- 5. Decisions under risk: The expected utility principle
- 6. Information systems: Improving economic decisions under risk
- 7. Inference: Bayesian networks for decisions under risk
- 8. Information Learning objectives value: When should an agent gather new information?
- 9. Decisions under uncertainty: Complete lack of information
- 10. Learning: Statistical learning of bayesian networks
- 11. Learning: Supervised learning with neural networks
- 12. Learning: Reinforcement learning
- 13. Learning: Preference-based reinforcement learning
- 14. Discussion: Ethical and philosophical issues

Note: This rough outline may be subject to change.

Literature Basic literature

Basic literature (by lecture):

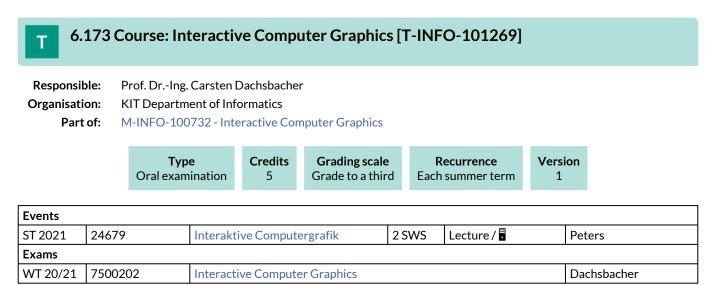
- 1. Russell & Norvig (2016, chapter 1), Bamberg et al. (2019, chapters 1 & 2)
- 2. Russell & Norvig (2016, chapter 2)
- 3. Keeney & Raiffa (1993, chapter 3)
- 4. Nickel et al. (2014, chapter 1) [German], Russell & Norvig (2016, chapter 3)
- 5. Bamberg et al. (2019, chapter 4), Fishburn (1988)
- 6. Bamberg et al. (2019, chapter 6)
- 7. Russell & Norvig (2016, chapters 13, 14, 16)
- 8. Russell & Norvig (2016, chapter 16), Bamberg et al. (2019, chapter 6)
- 9. Bamberg et al. (2019, chapter 5)
- 10. Russell & Norvig (2016, chapter 20)
- 11. Goodfellow et al. (2016, chapter 6)
- 12. Sutton & Barto (2018, chapter 3)
- 13. Wirth et al. (2017)
- 14. Russell & Norvig (2016, chapter 26)

Detailed references:

Bamberg, Coenenberg & Krapp (2019). Betriebswirtschaftliche Entscheidungslehre (16th ed.). Verlag Franz Vahlen GmbH.

Fishburn (1988). Nonlinear preference and utility theory. Baltimore: Johns Hopkins University Press.

Goodfellow, Bengio & Courville (2016). Deep learning. Cambridge: MIT press.


Keeney & Raiffa (1993). Decisions with multiple objectives: preferences and value trade-offs. Cambridge University Press.

Nickel, S., Stein, O., & Waldmann, K.-H. (2014). Operations Research (2nd ed.). Springer Berlin Heidelberg.

Russell & Norvig (2016). Artificial Intelligence: A Modern Approach (3rd Global Edition). Pearson.

Sutton & Barto (2018). Reinforcement learning: An introduction. Cambridge: MIT press.

Wirth, Akrour, Neumann & Fürnkranz (2017). A Survey of Preference-Based Reinforcement Learning Methods. Journal of Machine Learning Research, 18(1), 1–46.

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Туре	Credits	Grading scale	Recurrence	Version
Examination of another type	6	Grade to a third	see Annotations	1

Events						
WT 20/21	2500003	International Business Development and Sales	4 SWS	Block / 🗣	Klarmann, Terzidis, Casernave	
Exams						
WT 20/21	/T 20/21 7900353 International Business Development and Sales Klassing			Klarmann, Terzidis		

Legend: 🖥 Online, 🗱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Non exam assessment. The grade is based on the presentation, the subsequent discussion and the written elaboration.

Annotation

Due to the Corona situation it is currently unclear whether the seminar can be offered in WS20 / 21.

Below you will find excerpts from events related to this course:

V	International Business Development and Sales	Block (B)
V	2500003, WS 20/21, 4 SWS, Language: English, Open in study portal	On-Site

Content

This course is offered as part of the EUCOR programme in cooperation with EM Strasbourg. Max. 10 students of KIT and max. 10 students of EM Strasbourg will develop a sales presentation in tandems (teams of 2). This is based on the value proposition of a business model.

• An application is required to participate in this event. The application phase usually takes place at the beginning of the lecture period. Further information on the application process can be found on the website of the Marketing and Sales Research Group (marketing.iism.kit.edu) shortly before the start of the lecture period.

Total workload for 6 ECTS: about 180 hours.

6.175 Course: International Finance [T-WIWI-102646] Т **Responsible:** Prof. Dr. Marliese Uhrig-Homburg Organisation: KIT Department of Economics and Management Part of: M-WIWI-101480 - Finance 3 M-WIWI-101483 - Finance 2 Credits **Grading scale** Recurrence Version Type Grade to a third Written examination 3 see Annotations 1 **Events** WT 20/21 2530570 **International Finance** 2 SWS Lecture / 🗣 Walter, Uhrig-Homburg ST 2021 2530570 International Finance 2 SWS Lecture / Walter, Uhrig-Homburg

Exams						
WT 20/21	7900052	International Finance	Uhrig-Homburg			
Legend: 🖥 Online, 🖇	Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled					

Competence Certificate

Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 60minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Recommendation

None

Annotation

The course will not be offered in the summer semester 2020 as originally planned, but only in the winter semester 2020/2021. The course is offered as a 14-day or block course.

Below you will find excerpts from events related to this course:

International Finance

2530570, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Organizational issues Blockveranstaltung

Literature Weiterführende Literatur:

- Eiteman, D. et al., Multinational Business Finance, 13. Auflage, 2012.
- Solnik, B. und D. McLeavey, Global Investments, 6. Auflage, 2008.

International Finance

2530570, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Organizational issues nach dem 21.04. nach Absprache Literature Weiterführende Literatur:

- Eiteman, D. et al., Multinational Business Finance, 13. Auflage, 2012.
 Solnik, B. und D. McLeavey, Global Investments, 6. Auflage, 2008.

6.176 Course: International Management in Engineering and Production [T-WIWI-102882]

Responsil Organisati Part	on:	M-WIWI-10	g Sasse ment of Econ 01412 - Indus 01471 - Indus	strial Produc	tion III				
			ype xamination	Credits 3,5	Grading s Grade to a		Recurrence Each winter term	Version 1	
Events									
WT 20/21	2581	1956		International Management in Engineering and Production		2 SW5	5 Lecture /	Sass	e
Exams									
WT 20/21	7981	1956	Internatio	nal Managen	nent in Engine	ering a	nd Production	Schi	ultmanr

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None

Recommendation

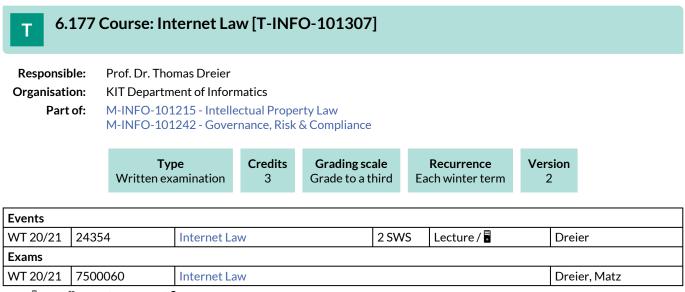
None

Below you will find excerpts from events related to this course:

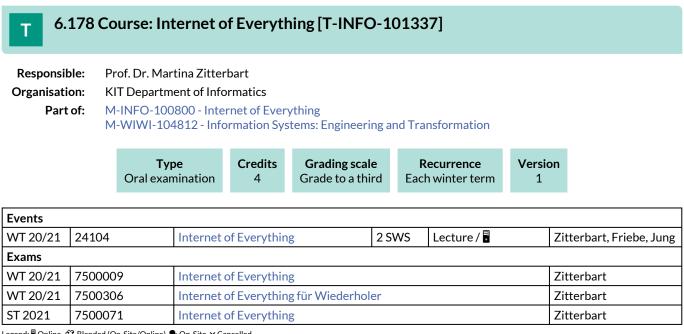
/	International Management in Engineering and Production	Lecture (V)
	2581956, WS 20/21, 2 SWS, Language: English, Open in study portal	Online

Content

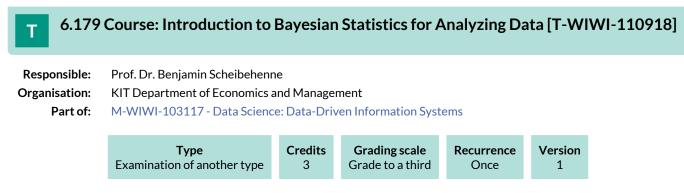
- Fundamentals of international business
- Forms of international cooperation and value creation
- Site selection
- Cost driven internationalization and site selection
- Sales and customer driven internationalization and site selection
- Challenges, risks and risk mitigation
- Management of international production sites
- Types and case studies of international production


Organizational issues

Blockveranstaltung


Im Seminarraum-West beim IIP, Termine siehe Institutshomepage

Literature


Wird in der Veranstaltung bekannt gegeben.

Legend: Dolline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Grades will be based on active participation (50%) and homework assignments (50%).

Prerequisites

Participants should already have a basic knowledge of R and standard frequentist statistical tests. Please bring your own Laptop with you as we will be using R for several hands-on examples and exercises during the class. We will mainly work with the book "Statistical Rethinking. A Bayesian Course with Examples in R and Stan" by Richard McElrath. Students are advised to obtain the book before the class starts.

Annotation

Due to its interactive nature, participation will be limited to 10 students. If you want to participate, please send a short email to scheibehenne@kit.edu until Thursday, the 23rd of April in which you outline why you are interested in this class and what your expectations are.

The class will consist of three day-long sessions from 9:00 (s.t.) to 18:00. The first session will be held on Thursday, the 7th of May 2020. The second session will be on Thursday, the 28th of May. The third session will be on Thursday, the 18th of June. The classroom will be communicated to registered students in advance. In case classrooms will be closed due to the Corona virus, the class will be taught online and the schedule will be adapted.

Responsible:	Prof. Dr. Alexandros	Stamatakis			
Organisation:	KIT Department of I	nformatics			
Part of:	M-INFO-100749 - Ir	ntroduction to I	Bioinformatics for Co	omputer Scientists	
	Туре	Credits	Grading scale	Recurrence	Version

	Grade to a third Each whiter term											
Events	vents											
WT 20/21	2400055		Introduction to Bioinformatics for Computer Scientists			Lecture /	Stamatakis					
Exams												
WT 20/21	7500057	Introductio	Introduction to Bioinformatics for Computer Scientists									
and Boaling A	Plandad (On Site (Online)		ماليما									

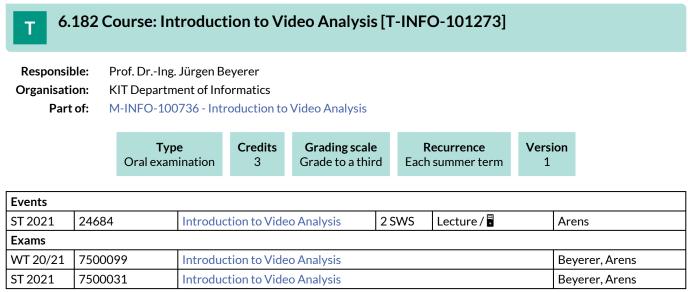
Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Recommendation

Grundlegende Kenntnisse in den Bereichen der theoretischen Informatik (Algorithmen, Datenstrukturen) und der technischen Informatik (sequentielle Optimierung in C oder C++, Rechnerarchitekturen, parallele Programmierung, Vektorprozessoren) werden vorausgesetzt.

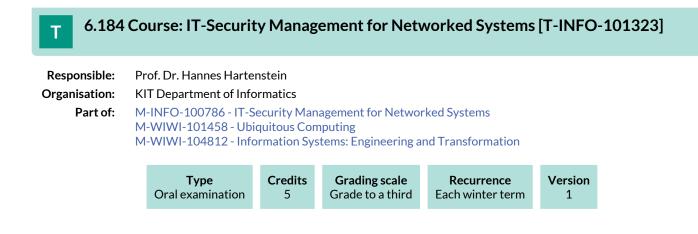
6.181 Course: Introduction to Stochastic Optimization [T-WIWI-106546] Т **Responsible:** Prof. Dr. Steffen Rebennack **Organisation:** KIT Department of Economics and Management Part of: M-WIWI-102832 - Operations Research in Supply Chain Management M-WIWI-103289 - Stochastic Optimization Credits **Grading scale** Recurrence Version Type Examination of another type 4,5 Grade to a third Each summer term 2 **Events** ST 2021 2550470 Einführung in die Stochastische 2 SWS Lecture / Rebennack Optimierung ST 2021 2550471 Übung zur Einführung in die 1 SWS Practice / Rebennack, Sinske Stochastische Optimierung ST 2021 2550474 Rechnerübung zur Einführung in die 2 SWS Practice / Rebennack, Sinske Stochastische Optimierung Exams

 WT 20/21
 7900242
 Introduction to Stochastic Optimization
 Rebennack


Legend: 🖥 Online, 🚯 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment (open book exam). The exam takes place in every semester.


Prerequisites

None.

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.185 Course: Joint Entrepreneurship Summer School [T-WIWI-109064]

Prof. Dr. Orestis Terzidis **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon)

Exami	Type nation of another type	Credits 6	Grading scale Grade to a third	Recurrence Irregular	Version 1			
2545021 Joint Entrepreneurship School 4 SWS Seminar / Kleinn, N								

Events ST 2021 Terzidis

Legend: Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The learning control of the program (Summer School) consists of two parts:

A) Investor Pitch:

Based on a presentation (investor pitch) in front of a jury, the insights gained and developed during the course of the event are presented and the business idea presented. Among other things, the presentation performance of the team, the structured content and the logical consistency of the business idea are evaluated. The exact evaluation criteria will be announced in the course.

B) Written elaboration:

The second part of the assessment is a written report. The iterative knowledge gain of the entire event is systematically logged and can be further supplemented by the contents of the presentation. The report documents key action steps, applied methods, findings, market analyzes and interviews and prepares them in writing. The exact structure and requirements will be announced in the course.

The grade consists of 50% presentation performance and 50% written preparation.

Prerequisites

The Summer School is aimed at master students of KIT. Prerequisite is the participation in the selection process.

Recommendation

We recommend basic business knowledge, the lecture Entrepreneurship as well as openness and interest in intercultural exchange. Solid knowledge of the English language is an advantage.

Annotation

The working language during the Summer School is English. A one-week stay in China is part of the Summer School.

6.186 Course: Judgment and Decision Making [T-WIWI-111099] Т **Responsible:** Prof. Dr. Benjamin Scheibehenne Organisation: KIT Department of Economics and Management Part of: M-WIWI-105312 - Marketing and Sales Management Туре Credits **Grading scale** Recurrence Expansion Version Grade to a third Written examination 4,5 Once 1 terms 1 **Events** 2540440 WT 20/21 3 SWS Lecture / Judgment and Decision Making Scheibehenne Exams WT 20/21 7900357 Judgment and Decision Making Scheibehenne

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The grade will be based on the written exam (60 minutes) at the end of the semester.

Below you will find excerpts from events related to this course:

Judgment and Decision Making

2540440, WS 20/21, 3 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

In this lecture, students will be introduced to fundamental theories and key insights on human judgment and decision making. Topics include decision making under uncertainty, choice biases, simple heuristics, risk perception and -communication, as well as social and emotional influences on decision making, to name but a few. In the Wintersemester 20/21 this class will be held online. The lecture videos will be available for download and there will be regular online meetings to discuss the topics. The lecture will be held in English.

Organizational issues

This lecture will be held online. The lecture videos will be available for download and there will be live Q&A sessions.

6.187 Course: KD²Lab Hands-On Research Course: New Ways and Tools in Experimental Economics [T-WIWI-111109]

Organ	onsible: iisation: Part of:	Prof. Dr. Christof W KIT Department of I M-WIWI-101446 - M-WIWI-103118 - M-WIWI-104080 -	Economics an Market Engin Data Science:	eering : Data-Driven User N	•		
	Examina	Type tion of another type	Credits 4,5	Grading scale Grade to a third	Recurrence Each summer term	Expansion 1 terms	Version 1

Competence Certificate

Non exam assessment. Grading will be based on a continuous basis throughout the semester. The assessment consists of:

- A written paper, and
- a group presentation with subsequent discussion and question and answer session of 30 minutes.

For particularly active and constructive participation in the discussions of other papers during the final presentation, a bonus of one grade level (0.3 or 0.4) can be achieved on the passed exam. Details on the grading will be announced at the beginning of the event.

Annotation

Due to the laboratory capacity and in order to ensure an optimal supervision of the project groups, the number of participants is limited. Places are allocated according to preferences and suitability for the topics. In particular, previous knowledge in the field of experimental economics plays a role.

The course will be offered starting in the summer semester 2021.

6.188 Course: Knowledge Discovery [T-WIWI-102666] **Responsible:** Michael Färber **Organisation:** KIT Department of Economics and Management Part of: M-WIWI-101456 - Intelligent Systems and Services M-WIWI-105366 - Artificial Intelligence M-WIWI-105368 - Web and Data Science Credits **Grading scale** Recurrence Version Type Written examination 4,5 Grade to a third Each winter term 2 **Events** W/T 20/21 2511302 Knowledge Discovery 2000 Lecture / Eärbor

VV1 20/21	2511302	Knowledge Discovery	2 3 8 8 3		Faibei
WT 20/21	2511303	Exercises to Knowledge Discovery	Färber, Saier		
Exams					
WT 20/21	7900013	Knowledge Discovery (Registration u	Sure-Vetter		
ST 2021	7900039	Knowledge Discovery (Registration u	Intil 12 July	/ 2021)	Färber

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation.

Students can be awarded a bonus on their final grade if they successfully complete special assignments.

Prerequisites

None

Below you will find excerpts from events related to this course:

Knowledge Discovery

Lecture (V) Online

Content

The lecture gives an overview of approaches of machine learning and data mining for knowledge acquisition from large data sets. These are examined especially with respect to algorithms, applicability to different data representations and the use in real application scenarios.

Knowledge Discovery is an established research area with a large community that investigates methods for discovering patterns and regularities in large amounts of data, including unstructured text. A variety of methods exist to extract patterns and provide previously unknown insights. This information can be predictive or descriptive.

The lecture gives an overview of Knowledge Discovery. Specific techniques and methods, challenges and current and future research topics in this research area will be taught.

Contents of the lecture cover the entire machine learning and data mining process with topics on supervised and unsupervised learning and empirical evaluation. Covered learning methods range from classical approaches like decision trees, support vector machines and neural networks to selected approaches from current research. Learning problems considered include feature vector-based learning and text mining.

Learning obectives:

Students

- know fundamentals of Machine Learning, Data Mining and Knowledge Discovery.
- are able to design, train and evaluate adaptive systems.
- conduct Knowledge Discovery projects in regards to algorithms, representations and applications.

Workload:

- The total workload for this course is approximately 135 hours
- Time of presentness: 45 hours
- Time of preperation and postprocessing: 60 hours
- Exam and exam preperation: 30 hours

Practice (Ü)

Online

Literature

- T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (http://www-stat.stanford.edu/~tibs/ElemStatLearn/)
- T. Mitchell. Machine Learning. 1997
- M. Berhold, D. Hand (eds). Intelligent Data Analysis An Introduction. 2003
- P. Tan, M. Steinbach, V. Kumar: Introduction to Data Mining, 2005, Addison Wesley

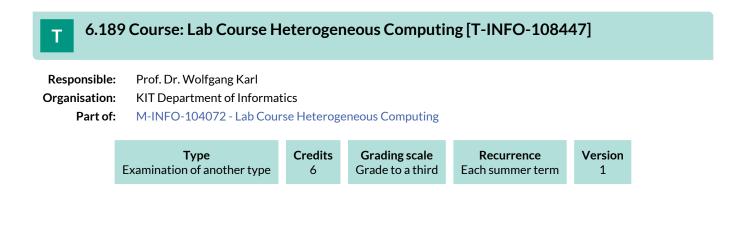
Exercises to Knowledge Discovery

2511303, WS 20/21, 1 SWS, Language: English, Open in study portal

Content

The exercises are based on the lecture Knowledge Discovery. Several exercises are covered, which take up and discuss in detail the topics covered in the lecture Knowledge Discovery. Practical examples are demonstrated to the students to enable a knowledge transfer of the theoretical aspects learned into practical application.

Contents of the lecture cover the entire machine learning and data mining process with topics on monitored and unsupervised learning processes and empirical evaluation. The learning methods covered range from classical approaches like decision trees, support vector machines and neural networks to selected approaches from current research. Learning problems considered include feature vector-based learning and text mining.


Learning objectives:

Students

- know fundamentals of Machine Learning, Data Mining and Knowledge Discovery.
- are able to design, train and evaluate adaptive systems.
- conduct Knowledge Discovery projects in regards to algorithms, representations and applications.

Literature

- T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (http://www-stat.stanford.edu/~tibs/ElemStatLearn/)
- T. Mitchell. Machine Learning. 1997
- M. Berhold, D. Hand (eds). Intelligent Data Analysis An Introduction. 2003
- P. Tan, M. Steinbach, V. Kumar: Introduction to Data Mining, 2005, Addison Wesley

6.190 Course: Lab Course: Natural Language Processing and Software Engineering [T-Т INFO-106239]

Responsible: Prof. Dr.-Ing. Anne Koziolek **Organisation:**

KIT Department of Informatics

Part of: M-INFO-103138 - Lab Course: Natural Language Processing and Software Engineering

Type	Credits	Grading scale	Recurrence	Version
Examination of another type	5	Grade to a third	Each winter term	1

Events										
WT 20/21	2400082	Lab Course: Natural Language Processing and Software Engineering	Processing and Software							
Exams	Exams									
WT 20/21	7500003	Lab Course: Natural Language Proc	Koziolek							
agandu 🗏 Onlina 🤅	Blended (On-Site/Online)	Non Site M Cancellad								

nd: 🖥 Online, 🗱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Lab Course: Natural Language Processing and Software Engineering Practical course (P) Blended (On-Site/Online) 2400082, WS 20/21, 4 SWS, Language: German, Open in study portal

Organizational issues

Das Praktikum wird größtenteils online durchgeführt. Wenn es die Teilnehmeranzahl und die Situation erlaubt, wird die Abschlussveranstaltung (Einsatz des Roboters auf selbsterstelltem Parcours) in Präsenz durchgeführt.

Literature

Verwendete Literatur wird im Praktikum bereitgestellt.

6.191 Course: Lab: Designing Embedded Application-Specific Processors [T-INFO-103115]

Responsible:Prof. Dr.-Ing. Jörg HenkelOrganisation:KIT Department of InformaticsPart of:M-INFO-101631 - Lab: Designi

M-INFO-101631 - Lab: Designing Embedded Application-Specific Processors

Type	Credits	Grading scale	Recurrence	Version	
Examination of another type	4	Grade to a third	Each winter term	1	

Events									
WT 20/21	2424302	Customized Embedded Processor Design	4 SWS	Practical course /	Hussain, Bauer, Henkel				
ST 2021	2424302	Customized Embedded Processor Design							
Exams									
WT 20/21	7500244	Lab: Customized Embedded Process	ab: Customized Embedded Processor Design						

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Customized Embedded Processor Design

2424302, WS 20/21, 4 SWS, Language: German/English, Open in study portal

Practical course (P) Online

Content

Internet of Things (IoT) covers an ever-increasing range of ap plications. Smart sensors and embedded devices with networking capabilities connect to the Internet to provide advanced control and mon itoring services in healthcare, smart home, smart city and many other domains.

The design of embedded processors, especially for IoT, has experienced significant progress since past few years. This development has been characterized by the increasing demand for application-specific solutions for IoT in order to fulfil the diverse and contradictory requirements of low power consumption, high performance, low cost and most important ly an efficient time-to-market deployment of those processors.

Application Specific Instruction Set Processors (ASIP) are customized processors, having a specific instruction set targeting a specific application to achieve an optimal solution for the above requirements. This customization can be addressed at different architectural levels by defining customized instructions, including/excluding predefined hardware blocks or setting processor's parameters.

The focus of this lab is to get hands-on expertise of state-of-the-art ASIP Tool-Suite and practice optimized processor design for IoT. We will select an IoT application from healthcare domain (e.g. heart rate mo nitoring), profile them, design ASIP targeting power/area/speed eff iciency, and then use our infrastructure to benchmark the designed ASIP to com pare cost & benefit in terms of performance, power, area, etc.

The ASIP design flow includes analysing and profiling the targeted application, defining an ASIP accordingly, creating the special instruction, embedding required hardware blocks or configuring differ ent architectural parameters. The synthesizable hardware description and complet e compiler tool chain are generated automatically, and then t he customized processor is implement ed on an FPGA platform. This processor can be benchmarked for performance, area, and power constraints using ModelSim and Xilinx tools.

For this lab, the lab script and all exercises are available in English language.

Customized Embedded Processor Design

2424302, SS 2021, 4 SWS, Language: German/English, Open in study portal

Practical course (P) Online

Content

Das Design von eingebetteten Prozessoren, insbesondere für IoT, persönliche Mobiltelefone, Navigationsgeräte usw., hat in den letzten Jahren erhebliche Fortschritte gemacht. Diese Entwicklung ist gekennzeichnet durch die steigende Nachfrage nach anwendungsspezifischen Lösungen, um die vielfältigen und widersprüchlichen Anforderungen an geringen Stromverbrauch, hohe Leistung, niedrige Kosten und vor allem eine effiziente Time-to-Market dieser Prozessoren zu erfüllen.

Anwendungsspezifische Befehlssatzprozessoren (Application Specific Instruction Set Processors, ASIP) sind kundenspezifische Prozessoren mit einem spezifischen Befehlssatz, der auf eine bestimmte Anwendung ausgerichtet ist, um eine optimale Lösung für die oben genannten Anforderungen zu erreichen. Diese Anpassung kann auf verschiedenen architektonischen Ebenen erfolgen, indem kundenspezifische Befehle definiert werden, vordefinierte Hardwareblöcke einbezogen oder ausgeschlossen werden oder die Parameter des Prozessors eingestellt werden.

Der Schwerpunkt dieses Praktikums liegt darin, praktische Erfahrungen mit der modernen ASIP Tool-Suite zu sammeln und optimiertes Prozessordesign für Embedded-Anwendungen zu üben. Wir wählen eine Beispielapplikation aus, erstellen ein Profil, entwerfen einen ASIP mit dem Ziel der Leistungs-/Flächen-/Geschwindigkeitseffizienz und nutzen dann unsere Infrastruktur zum Benchmarking des entworfenen ASIPs, um Kosten und Nutzen in Bezug auf Leistung, Stromverbrauch, Fläche usw. zu vergleichen.

Der ASIP-Entwurfsablauf umfasst die Analyse und das Profiling der angestrebten Anwendung, die entsprechende Definition eines ASIPs, die Erstellung der speziellen Anweisung, die Einbettung der erforderlichen Hardwareblöcke oder die Konfiguration verschiedener Architekturparameter. Die synthetisierbare Hardware-Beschreibung und die komplette Compiler-Werkzeugkette werden automatisch generiert, und dann wird der kundenspezifische Prozessor auf einer FPGA-Plattform implementiert. Dieser Prozessor kann mit den Werkzeugen QuestaSim/ModelSim und Xilinx Vivado auf Leistung, Fläche und Stromverbrauch getestet werden.

Für dieses Labor sind die Laborhandbücher und alle Übungen in englischer Sprache verfügbar.

Aufbau des Labors:

- Kick-off: zu Beginn des Semesters nach gemeinsamer Absprache
- Wöchentliche Sitzungen: Acht 2-3-stündige Sitzungen pro Woche
- Labor-Gruppen: Gruppen von 2-3 Studenten zur Bearbeitung von Aufgaben
- Miniprojekt: letzte Sitzung ist ein Miniprojekt, bei dem jede Gruppe den Prozessor für eine bestimmte Anwendung anpassen und ihre Arbeit präsentieren muss.

Labor-Infrastruktur:

Die verfügbare Infrastruktur für einen ASIP-Entwurfsablauf basiert auf:

- ASIPmeister: wird verwendet, um ASIP mit neuen Anweisungen zu entwerfen und eine Compiler-Toolkette zu erstellen
- Dlxsim: wird für das Instruktionsprofiling verwendet
- QuestaSim: verwendet zum Testen des entworfenen ASIPs
- Vivado: wird zur Messung von Fläche, Leistung und Timing verwendet
- Diese Werkzeuge werden automatisch über das Makefile integriert.

Lernen:

- Erlernen der Grundlagen in Embedded Systems und ASIP.
- Erlernen des Standes der Technik in den Embedded Prozessor Tool-Suiten wie (QuestaSim/ModelSim und Xilinx Vivado/ ISE).
- Arbeiten auf einer FPGA-Plattform.

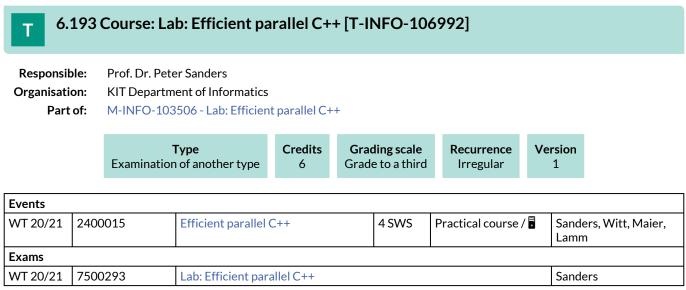
6.192 Course: Lab: Designing Embedded Systems [T-INFO-107689] **Responsible:** Prof. Dr.-Ing. Jörg Henkel Organisation: **KIT** Department of Informatics Part of: M-INFO-103808 - Lab: Designing Embedded Systems Туре Credits **Grading scale** Recurrence Version Examination of another type 4 Grade to a third Each term 1 **Events** WT 20/21 2424303 4 SWS Practical course / 🕄 **Design of Embedded Systems** Salamin, Bauer, Henkel Exams WT 20/21 7500160 Lab: Designing embedded systems Henkel Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

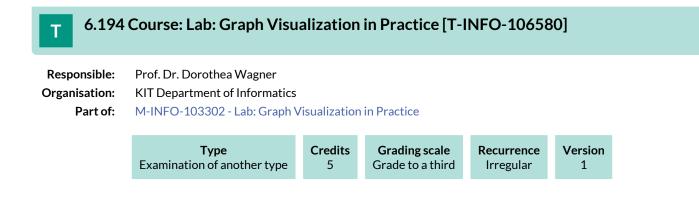
V	Design of Embedded Systems 2424303, WS 20/21, 4 SWS, Language: German/English, Open in study portal	Practical course (P) Blended (On-Site/Online)	
---	---	--	--

Content

Embedded Systems are systems that are composed of hardware and software parts that are developed for a special task within a bigger system.


Examples for such systems are smart phones, digital cameras, robot controls, set-top boxes etc. The application areas of such systems are growing rapidly. As these systems are not only composed of application software, this lab exercises the combined development of hardware and software, as it is typical for embedded systems. A Fischertechnik robot and a hardware development board are used as target system.

The schedule of the lab is as follows:


At first, the abstract behavior of the system is described. The task is to have the robot follow a small black line on a bright background by using photoresistors. This specification is transformed into a software for a microcontroller. The microcontroller is available as a hardware description language (HDL). To connect it to periphery (motors and photoresistors), additional parts have to be written in a hardware-description language. This shows the usage of typical development- and design tools for simulation and synthesis. After combining the hardware and the software parts, the robot is tested against the initial specification. Furthermore, an intelligent searching algorithm has to be implemented to find the line when it get lost.

Prerequisites: Base knowledge in VHDL and C/C++ programming.

Targetaudience: This lab is suitable for electrical engineering students, computer science students and those who have interest in embedded systems design.

Legend: Dolline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.195 Course: Lab: Internet of Things (IoT) [T-INFO-107493]

Responsible:Prof. Dr.-Ing. Jörg HenkelOrganisation:KIT Department of InformaticsPart of:M-INFO-103706 - Lab: Internet of Things (IoT)

2424304	Internet of Things (IoT)	4 SWS	Practical course /	Salamin, Ghasemy, Henkel				
2424304	Internet of Things (IoT)	4 SWS	Practical course /	Salamin, Ghasemy, Henkel				
Exams								
20/21 7500183 Lab: Internet of Things (IoT)								
	2424304	2424304 Internet of Things (IoT)	2424304 Internet of Things (IoT) 4 SWS	2424304 Internet of Things (IoT) 4 SWS Practical course /				

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Internet of Things (IoT)

2424304, WS 20/21, 4 SWS, Language: English, Open in study portal

Practical course (P) Online

Content

-This lab aims at providing the student with the practical concept of IoT systems design.

-It provides an overview of the IoT systems' aspects including embedded intelligence, connectivity, interaction with physical world, etc.

-It covers the main design and implementation issues for IoT devices and their applications. These issues challenge the students to tailor smart techniques to optimize the embedded software on IoT device to meet the constrained resources.

-The students gain in-depth practical experiences in embedded system design with focus on the IoT applications as well as the communication in connected devices.

-This lab is also suitable for electrical engineering students and those who have interest in embedded systems design.

-The ability to develop software programs in C or C++ is recommended.

-Basic knowledge about other programming languages can be helpful (e.g. Java or Python)

The students will understand the main concept of IoT systems including the design objectives, application domains and their requirements, design challenges, etc.

The students will gain the ability to develop software programs for the IoT embedded devices, implement the code on the hardware, conduct the tests, find the bugs and errors, and debug the software code on the hardware.

The students shall be able to implement and apply the concepts that are critical in IoT domain, e.g. low power design, security, ect.

The students will be able to develop, integrate and evaluate a small IoT system with its main components: sensors to get data from physical world, embedded processor for control the device and process the data, wireless radio to transmit the data from the device to the Internet, a storage (on the Internet or on a Smart Phone) to keep the data for further analysis.

Internet of Things (IoT)

2424304, SS 2021, 4 SWS, Language: English, Open in study portal

Practical course (P) Online

Content

Welcome to the Internet of Things (IoT) world, where millions of connected devices are now involved almost in our everyday life, including our homes, offices, transportation, and our healthcare, from home appliances, vehicles, smartphones to wearable devices like smartwatches. IoT is growing very fast and spreads very quickly.

Overview: This lab aims at providing the student with the practical concept of IoT systems design.

- It provides an overview of the IoT systems' aspects including embedded intelligence, connectivity, interaction with the physical world, etc.
- It covers the main design and implementation issues for IoT devices and their applications. These issues challenge the students to tailor smart techniques to optimize the embedded software on IoT devices to meet the constrained resources.
- The students gain in-depth practical experiences in embedded system design with a focus on IoT applications as well as communication in connected devices.

Lab's Goals:

- The students will understand the main concept of IoT systems including the design objectives, application domains, and their requirements, design challenges, etc.
- The students will gain the ability to develop software programs for the IoT embedded devices, implement the code on the hardware, conduct the tests, find the bugs and errors, and debug the software code on the hardware.
- The students shall be able to implement and apply the concepts that are critical in the IoT domain, e.g. low power design, security, etc.
- The students will be able to develop, integrate and evaluate a small IoT system with its main components: sensors to get data from the physical world, the embedded processor for control the device and process the data, wireless radio to transmit the data from the device to the Internet, storage (on the Internet or on a Smart Phone) to keep the data for further analysis.

Target Audience:

• This lab is also suitable for electrical engineering students and those who have an interest in embedded systems design.

Prerequisites:

- The ability to develop software programs in C or C++ is recommended.
- Basic knowledge about other programming languages can be helpful (e.g., Java or Python)

Details:

- The lab manuals and exercises are available in English.
- The lab is split into weekly sessions throughout the semester. Each session is approximate ~4hours per week. At the end of the semester, there would be a final project.
- The state-of-the-art low-power IoT boards and the corresponding development software, are used in the lab. Currently, Texas Instrument (TI) CC1350 microcontroller, and the latest version of Code Composer Studio is the base platform.
- The exercises in the lab are based on the TI repository. But for the final projects, the students have the flexibility to design their desired systems.

Responsible: Prof. Dr.-Ing. Jörg Henkel **Organisation: KIT** Department of Informatics Part of: M-INFO-104031 - Lab: Low Power Design and Embedded Systems

	Examinatio	Type on of another type	Credits 3		ding scale e to a third	Recurrence Each term	Ve	rsion 1	
Events									
WT 20/21	V/21 2424120 Low Power D		n and Embe	dded	2 SWS	Practical course	/ •	Gonzale:	z, Henkel,

		Systems			Castro-Godinez			
ST 2021	2424811	Low Power Design and Embedded Systems	2 SWS	Practical course / 🖥	Gonzalez, Henkel, Khdr			
Exams								
WT 20/21	T 20/21 7500104 Lab: Low Power Design and Embedded Systems							

Legend: Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Low Power Design and Embedded Systems

2424120, WS 20/21, 2 SWS, Language: English, Open in study portal

Practical course (P) Online

Content

Nowadays, power consumption is on of the most important criterion in the design of on-chip applications. Other design constraints, such as performance, were dominant in the past, but now it is imperative to optimize the power consumption, due it is a limiting factor. In fact, the power consumption has brought out many changes in the last decade: the fact that today we have multi-core chips instead of single core chips, is a direct result of the increase in power consumption. The power consumption is not only a matter of hardware, but also the software and the operating system decisively determine it. Therefore, this internship is indispensable for all who deal with on-chip systems at hardware and software level.

This lab is composed of two main experiments. The first part consists of an exploration and analysis of the effect of loop transformation techniques and compiler optimizations in the power consumption, execution time and cache performance. SimpleScalar and Wattch simulators are used to run the applications and to obtain metrics to analyze.

The second part of the lab consists of a Hardware / Software Co-design exploration using a High-Level Synthesis (HLS) Tool called "LegUp". This tool is capable to take a C code implementation and to produce three types of implementations: a complete hardware (RTL) implementation, a software implementation to be executed in a MIPS soft-processor, and a hybrid implementation where one or more functions of a program are compiled to hardware accelerators with the remaining program segments running in software in a MIPS soft processor. Considering these possibilities, the participants of the lab will perform an exploration and analysis of the implementations in

terms of required execution cycles, maximum frequency, area (FPGA resources), and power consumption. Altera Quartus tools are used to synthesize the implementations and obtain metrics, while Modelsim tool is used to perform simulations. Preliminary discussion appointment: it will be announced via email to all registrants.

Note: The lab is given as a full week block.

Content

Lab Description

Nowadays, power and energy consumption are two of the most important criteria in the design of on-chip applications. Other design constraints, such as performance, were dominant in the past, but now it is imperative to optimize for low power, since on-chip temperature and battery life are limiting design factors on modern multi / many core systems.

This lab explores different software and hardware approaches for power and energy reduction on modern embedded systems, considering other relevant metrics and constraints (eg, temperature, performance, chip area).

First part: software effects on power and performance

The first part of the lab consists of an exploration and analysis of the effect of loop transformation techniques and compiler optimizations in the power consumption, execution time and cache performance. SimpleScalar and Wattch simulators are used to run the applications and to obtain metrics to analyze.

Second part: hardware / software co-design

The second part of the lab consists of a Hardware / Software Co-design exploration using the High-Level Synthesis (HLS) technique. This technique takes a C code implementation and produces three types of system implementation: a complete hardware (RTL) implementation, a pure software implementation to be executed in a MIPS soft-processor, and a hybrid implementation where one or more functions of a program are compiled to hardware accelerators with the remaining program segments running in software in a MIPS soft processor.

Third Part: Demo in Thermal Lab

As part of the course, there will be access to the CES thermal lab, in which an experiment will be carried out to analyze the effect of power and temperature on a real board setup, using a thermal camera.

Preliminary discussion appointment: it will be announced via email to all registrants. Note: The lab is given as a full week block.

6.197 Course: Laboratory Course Algorithm Engineering [T-INFO-104374]								
Responsible:	Prof. Dr. Peter Sanders Dr. rer. nat. Torsten Ueckerdt Prof. Dr. Dorothea Wagner							
Organisation:	KIT Department of Informatics							
Part of:	M-INFO-102072 - Laboratory Course Algorithm Engineering							
	Type Examination of another type	Credits 6	Grading scale Grade to a third	Recurrence Irregular	Version 1			

Events								
WT 20/21	NT 20/21 2424305 Practical Course in Algorithm 4 SWS Practical course / Design				Buchhold, Zündorf, Zeitz, Ueckerdt, Sauer			
Exams								
WT 20/21	7500072	Practical Course in Algorithm Des	Practical Course in Algorithm Design					
	WT 20/21 7500072 Practical Course in Algorithm Design Ueckerdt							

Legend: 🖥 Online, 🔀 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Practical Course in Algorithm Design

2424305, WS 20/21, 4 SWS, Language: German, Open in study portal

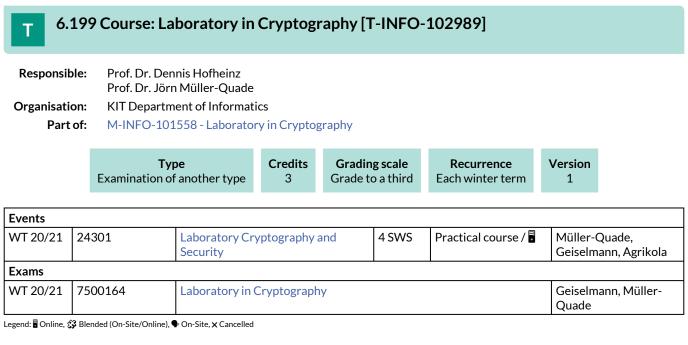
Practical course (P) On-Site

Content

In the practical course Algorithm Engineering the students are given miscallaneous questions from algorithmics, which they have to implement independently in small working groups. The main focus lies on object oriented programming with Java or C++. Linear programming may also occur.

Prerequisites: Knowledge of the lecture Algorithms II is recommended.

Learning Goals:


The purpose of the practical course in algorithm design is to make learned knowledge work. The students are given varying topics from algorithmics, which they have to implement in small working groups. Possible Topics are, for exmaple, algorithms for flow problems, shortest path problems, or clustering techniques. In this way students learn to write efficient code.

Workload: Praktikum mit 4SWS, 6 LP

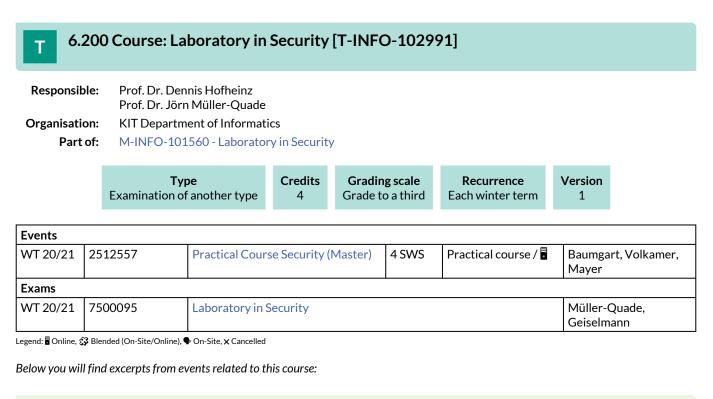
6 LP entspricht ca. 180 Arbeitsstunden

6.198 Course: Laboratory in Cryptoanalysis [T-INFO-102990]										
Responsit	Responsible: Prof. Dr. Dennis Hofheinz Prof. Dr. Jörn Müller-Quade									
Organisati	on:	KIT Departm	ent of Informatics							
Part	of:	M-INFO-101	559 - Laboratory i	n Cryptoana	alysis					
								_		
		٦	Гуре	Credits	Gra	ding scale	Recurrence	Ve	rsion	
		Examination	of another type	3	Grad	e to a third	Each term		1	
Events										
ST 2021 248		81 Laboratory: Crypta		tanalysis	nalysis 4 SWS		Practical course /		Müller-Quade,	
									Geise Hanis	elmann, Agrikola, sch

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Laboratory Cryptography and Security


24301, WS 20/21, 4 SWS, Open in study portal

Practical course (P) Online

Content

The lab covers different areas of computer security and cryptography. The topics are presented theoretically and are implemented afterwards. Covered topics are:

- Historical encryption
- EC-card PINs
- Block ciphers
- Efficient long number arithmetic
- ElGamal encryption / signature

Practical Course Security (Master)

2512557, WS 20/21, 4 SWS, Language: German, Open in study portal

Practical course (P) Online

Content

The lab deals with the IT security of everyday utensils. Implemented security mechanisms are first theoretically investigated and put to the test with practical attacks. Finally, countermeasures and suggestions for improvement are worked out. The lab is offered within the competence center for applied security technologies (KASTEL) and is supervised by several institutes.

The success control takes the form of a final presentation, a thesis and the handing over of the developed code.

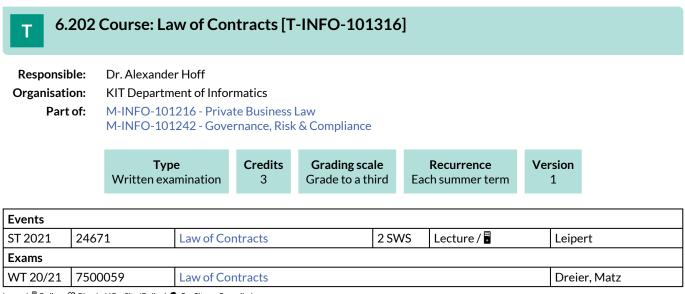
More information on https://ilias.studium.kit.edu/goto_produktiv_crs_998421.html

6.201 Course: Large-scale Optimization [T-WIWI-106549]

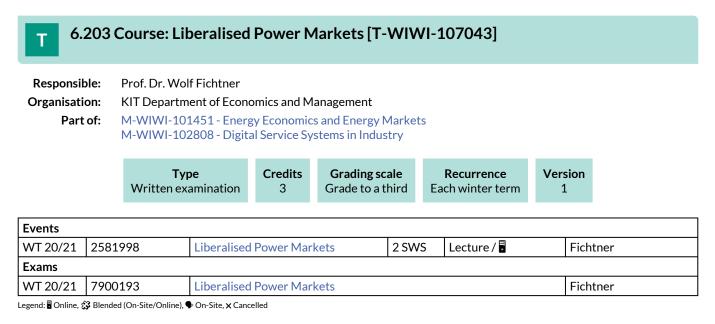
Responsible:	Prof. Dr. Steffen Rebennack							
Organisation:	KIT Department of Economics and Management							
Part of:	M-WIWI-101473 - Mathematical Programming M-WIWI-102832 - Operations Research in Supply Chain Management M-WIWI-103289 - Stochastic Optimization							

Examination of another type	4,5	Grade to a third	Each summer term	2	

Events					
ST 2021	2550475	Large-Scale Optimization	2 SWS	Lecture / 🖥	Rebennack
ST 2021	2550476	Übung zu Large-Scale Optimization	1 SWS	Practice / 🖥	Rebennack, Sinske
ST 2021	2550477	Rechnerübung zu Large-scale Optimization	2 SWS	Practice / 🖥	Rebennack, Sinske


Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate


Alternative exam assessment (open book exam). The exam takes place in every semester.

Prerequisites

None.

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Liberalised Power Markets

2581998, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

1. Power markets in the past, now and in future

2. Designing liberalised power markets

- 2.1. Unbundling Dimensions of liberalised power markets
- 2.2. Central dispatch versus markets without central dispatch
- 2.3. The short-term market model
- 2.4. The long-term market model
- 2.5. Market flaws and market failure
- 2.6. Regulation in liberalised markets

3. The power (sub)markets

- 3.1 Day-ahead market
- 3.2 Intraday market
- 3.3 (Long-term) Forwards and futures markets
- 3.4 Emission rights market
- 3.5 Market for ancillary services
- 3.6 The "market" for renewable energies
- 3.7 Future market segments

4. Grid operation and congestion management

- 4.1. Grid operation
- 4.2. Congestion management

5. Market power

- 5.1. Defining market power
- 5.2. Indicators of market power
- 5.3. Reducing market power

6. Future market structures in the electricity value chain

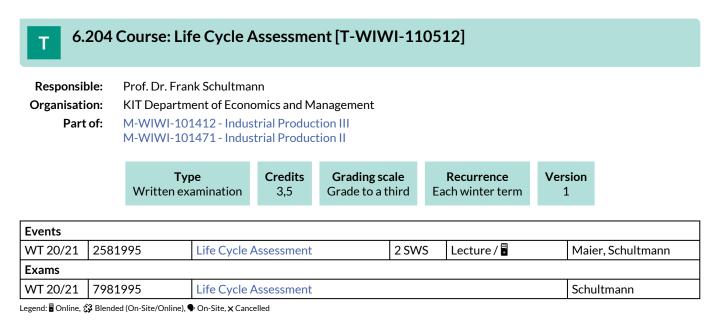
1. Power markets in the past, now and in future

2. Designing liberalised power markets

- 2.2. Unbundling Dimensions of liberalised power markets
- 2.3. Central dispatch versus markets without central dispatch
- 2.4. The short-term market model
- 2.5. The long-term market model
- 2.6. Market flaws and market failure
- 2.7. Regulation in liberalised markets

3. The power (sub)markets

- 3.1 Day-ahead market
- 3.2 Intraday market
- 3.3 (Long-term) Forwards and futures markets
- 3.4 Emission rights market
- 3.5 Market for ancillary services
- 3.6 The "market" for renewable energies
- 3.7 Future market segments


4. Grid operation and congestion management

- 4.1. Grid operation
- 4.2. Congestion management

5. Market power

- 5.1. Defining market power
- 5.2. Indicators of market power
- 5.3. Reducing market power
- 6. Future market structures in the electricity value chain

Literature Weiterführende Literatur: Power System Economics; Steven Stoft, IEEE Press/Wiley-Interscience Press, 0-471-15040-1

Competence Certificate

The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None.

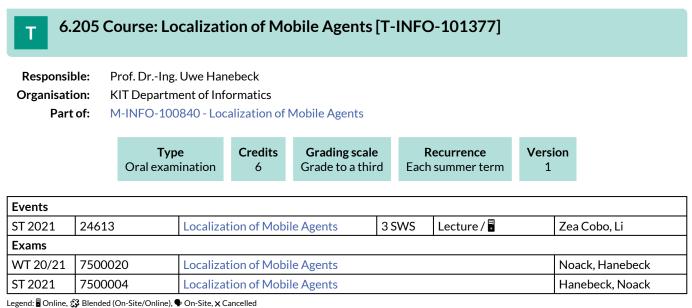
Recommendation

None

Below you will find excerpts from events related to this course:

Life Cycle Assessment

2581995, WS 20/21, 2 SWS, Language: English, Open in study portal


Lecture (V) Online

Content

Introduction to life cycle assessment. The lecture describes structure and individual steps of life cycle assessment in detail.

Literature

werden in der Veranstaltung bekannt gegeben

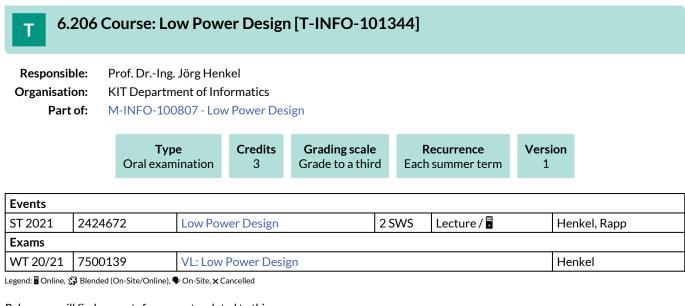
Below you will find excerpts from events related to this course:

Localization of Mobile Agents

24613, SS 2021, 3 SWS, Language: German, Open in study portal

Lecture (V) Online

Content


This module provides a systematic introduction into the topic of localization methods. In order to facilitate understanding, the module is divided into four main topics. Dead reckoning treats the instantaneous determination of a vehicle's position based on dynamic parameters like velocity or steering angle. Localization with the help of measurements of known landmarks is part of static localization. In addition to the closed-form solutions for particular measurements (distances and angles), the least squares method for fusion arbitrary measurements is also introduced. Dynamic localization treats the combination of dead reckoning and static localization. The central part of the lecture is the derivation of the Kalman filter, which has been successfully applied in several practical applications. Finally, simultaneous localization and mapping (SLAM) is introduced, which allows localization in case of (partly) unknown landmark positions.

Organizational issues

Prüfungsterminvorschläge und das Verfahren dazu sind auf der Webseite der Vorlesung zu finden.

Literature

Grundlegende Kenntnisse der linearen Algebra und Stochastik sind hilfreich.

Below you will find excerpts from events related to this course:

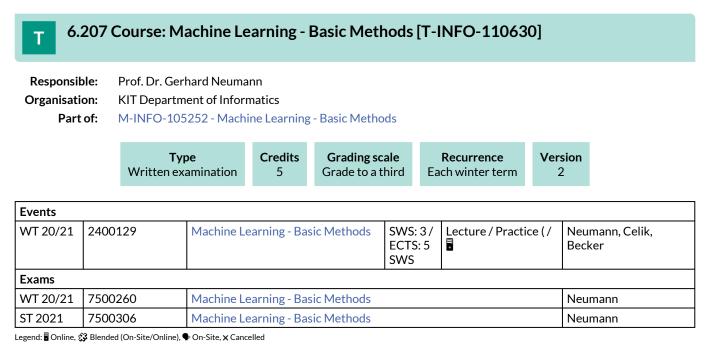
V

Low Power Design

2424672 SS 2021 2 SWS I	Language: English, Open in study portal
2+2+072, 552021, 25005, 1	Language. English, Open in Study por tar

Content

Smart embedded devices driven by advances in fields as diverse as automotive smart home, to high-tech like lithography or battery technology for IoT devices are now omnipresent in our lives. Today's consumers have very high expectations from the embedded devices they own. Many emerging technologies such as virtual reality, robotics and artificial intelligence are limited in scope only by the performance of the underlying embedded devices. Unfortunately, performance of embedded devices is inherently constrained both by their limited cost, size as well as heat dissipating capacity and their limited on-board battery. The fact that all contemporary smartphones have multi-core chips running at low frequencies instead of single-core chips running at high frequencies can be attributed directly to the power consumption constraints imposed on them.


The constraints mandate highly optimized hardware-software co-design techniques for embedded devices that allows extraction of maximum performance with minimal power consumption. A good low power design requires all three building blocks of an embedded device – hardware, software and operating system – to work together synergistically. The lectures cover all the three aspects alongside their interactions from a low power design perspective in depth.

The lecture provides an overview of design methods, synthesis tools, estimation models, software techniques, operating system strategies, scheduling algorithms, etc., with the aim of minimizing the power consumption of embedded devices without compromising their performance. Both the research-relevant and industry-prevalent topics at different level of abstractions (from circuit to system) are discussed in this lecture.

Recommendations: Module "Entwurf und Architekturen für eingebettete Systeme". Basic knowledge from the module "Optimierung und Synthese Eingebetteter Systeme" is helpful but not essential for understanding of this lecture. The lecture is equally suitable for students from both computer science as well as electrical engineering department.

Students are made aware of various low power design optimizations employed in state-of-the-art embedded devices. At the end of the lecture, the students will be able to recognize the challenges involved in crafting efficient low power designs and how to tackle them.

Lecture (V) Online

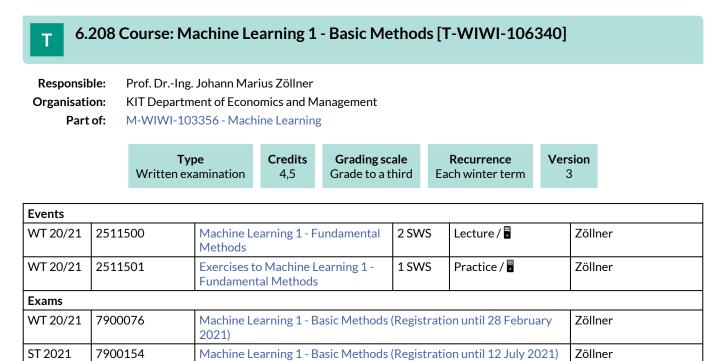
Below you will find excerpts from events related to this course:

Machine Learning - Basic Methods

2400129, WS 20/21, SWS: 3 / ECTS: 5 SWS, Language: English, Open in study portal

Lecture / Practice (VÜ) Online

Content


Qualifikationsziele:

- Studierene Erlangen Kenntnis der grundlegenden Methoden des Maschinellen Lernens
- Studierende erlangen die mathematischen Grundkenntnisse um die theoretischen Grundlagen des Maschinellen Lernens verstehen zu können
- Studierende können Methoden des Maschinellen Lernens einordnen, formal beschreiben und bewerten
- Studierende können ihr Wissen für eine Auswahl geeigneter Modelle und Methoden für ausgewählte Probleme im Bereich des Maschinellen Lernens einsetzen

Organizational issues

Prof. Gerhard Neumann

M.Sc. Onur Celik

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None.

Below you will find excerpts from events related to this course:

V

Machine Learning 1 - Fundamental Methods

2511500, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

The field of knowledge acquisition and machine learning is a rapidly expanding field of knowledge and the subject of numerous research and development projects. The acquisition of knowledge can take place in different ways. Thus a system can benefit from experiences already made, it can be trained, or it draws conclusions from extensive background knowledge.

The lecture covers symbolic learning methods such as inductive learning (learning from examples, learning by observation), deductive learning (explanation-based learning) and learning from analogies, as well as sub-symbolic techniques such as neural networks, support vector machines and genetic algorithms. The lecture introduces the basic principles and structures of learning systems and examines the algorithms developed so far. The structure and operation of learning systems is presented and explained with some examples, especially from the fields of robotics and image processing.

Learning obectives:

- Students acquire knowledge of the fundamental methods in the field of machine learning.
- Students can classify, formally describe and evaluate methods of machine learning.
- Students can use their knowledge to select suitable models and methods for selected problems in the field of of machine learning.

Literature

Die Foliensätze sind als PDF verfügbar

Weiterführende Literatur

- Artificial Intelligence: A Modern Approach Peter Norvig and Stuart J. Russell
- Machine Learning Tom Mitchell
- Pattern Recognition and Machine Learning Christopher M. Bishop
 Reinforcement Learning: An Introduction Richard S. Sutton and Andrew G. Barto
- Deep Learning Ian Goodfellow, Yoshua Bengio, Aaron Courville

Weitere (spezifische) Literatur zu einzelnen Themen wird in der Vorlesung angegeben.

Т 6.	209	Course: M	lachine Le	earning 2	2 – Advanc	ed M	ethods [T-V	VIWI-1	06341]
Responsible:Prof. DrIng. Johann Marius ZöllnerOrganisation:KIT Department of Economics and ManagementPart of:M-WIWI-101637 - Analytics and Statistics M-WIWI-103356 - Machine Learning									
Ty Written ex			-	Credits 4,5	Grading scaleRecurrenceGrade to a thirdEach summer term			Version 2	
Events									
ST 2021	251	1502	Machine L methods	Machine Learning 2 - Advanced 2 SWS Lecture /			•	Zöllner	
ST 2021	ST 2021 2511503 Exercises for Machine Learning 2 - Advanced Methods		1 SV	/S Practice /		Zöllner			
Exams									
WT 20/21	WT 20/21 7900050 Machine Learning 2 – Advanced Methods (Registration until 08 February 2021)					til 08	Zöllner		
ST 2021 7900080 Machine Learning 2 – Advanced Methods (Registration until 12 July				til 12 July	Zöllner				

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Please note: in the winter semester 2020/21 the exam will be held in the form of an online Ilias exam.

As of summer semester 2021: The assessment of this course is a written examination (60 min) according to 4(2), 1 of the examination regulation or an oral exam (20 min) following 4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites None.

none.

Below you will find excerpts from events related to this course:

Machine Learning 2 - Advanced methods

2021)

2511502, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

The subject area of machine intelligence and, in particular, machine learning, taking into account real challenges of complex application domains, is a rapidly expanding field of knowledge and the subject of numerous research and development projects.

The lecture "Machine Learning 2" deals with advanced methods of machine learning such as semi-supervised and active learning, deep neural networks (deep learning), pulsed networks, hierarchical approaches, e.g. As well as dynamic, probabilistic relational methods. Another focus is the embedding and application of machine learning methods in real systems.

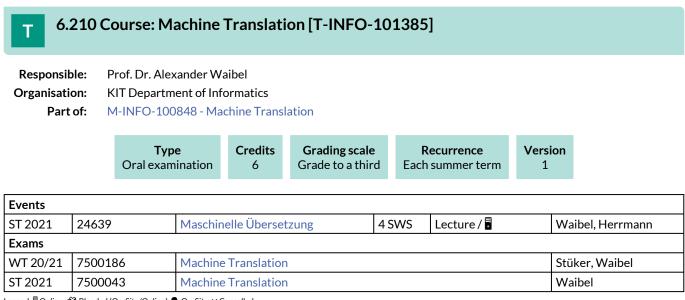
The lecture introduces the latest basic principles as well as extended basic structures and elucidates previously developed algorithms. The structure and the mode of operation of the methods and methods are presented and explained by means of some application scenarios, especially in the field of technical (sub) autonomous systems (robotics, neurorobotics, image processing, etc.).

Learning objectives:

- Students understand extended concepts of machine learning and their possible applications.
- Students can classify, formally describe and evaluate methods of machine learning.
- In detail, methods of machine learning can be embedded and applied in complex decision and inference systems.
- Students can use their knowledge to select suitable models and methods of machine learning for existing problems in the field of machine intelligence.

Recommendations:

Attending the lecture Machine Learning 1 or a comparable lecture is very helpful in understanding this lecture.


Literature

Die Foliensätze sind als PDF verfügbar

Weiterführende Literatur

- Artificial Intelligence: A Modern Approach Peter Norvig and Stuart J. Russell
- Machine Learning Tom Mitchell
- •
- Pattern Recognition and Machine Learning Christopher M. Bishop Reinforcement Learning: An Introduction Richard S. Sutton and Andrew G. Barto •
- Deep Learning Ian Goodfellow, Yoshua Bengio, Aaron Courville

Weitere (spezifische) Literatur zu einzelnen Themen wird in der Vorlesung angegeben.

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.211 Course: Management Accounting 1 [T-WIWI-102800]

Responsible:	Prof. Dr. Marcus Wouters
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101498 - Management Accounting

TypeCreditsWritten examination4,5	Grading scale	Recurrence	Version
	Grade to a third	Each summer term	2

Events						
ST 2021	2579900	Management Accounting 1	2 SWS	Lecture /	Wouters	
ST 2021	2579901	Übung zu Management Accounting 1 (Bachelor)	2 SWS	Practice /	Riar	
ST 2021	2579902		2 SWS	Practice /	Riar	
Exams						
WT 20/21	79-2579900-В	Management Accounting 1 (Bachelor	Wouters			
WT 20/21	79-2579900-M	Management Accounting 1 (Masterv	lanagement Accounting 1 (Mastervorzug und Master)			

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 120minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Annotation

Students in the Bachelor' program can only take the related tutorial and examination. Students in the Master's program (and Bachelor's students who are already completing examinations for their Master's program) can only take the related tuturial and examination.

Below you will find excerpts from events related to this course:

Management Accounting 1

2579900, SS 2021, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA1 are: short-term planning, investment decisions, budgeting and activity-based costing.

We will use international material written in English.

We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).

The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Learning objectives:

- Students have an understanding of theory and applications of management accounting topics.
- They can use financial information for various purposes in organizations.

Examination:

• The assessment consists of a written exam (120 minutes) at the end of each semester (following § 4 (2) No. 1 of the examination regulation).

Workload:

• The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

- Marc Wouters, Frank H. Selto, Ronald W. Hilton, Michael W. Maher: Cost Management Strategies for Business Decisions, 2012, Publisher: McGraw-Hill Higher Education (ISBN-13 9780077132392 / ISBN-10 0077132394)
- In addition, several papers that will be available on ILIAS.

V

Übung zu Management Accounting 1 (Bachelor) 2579901, SS 2021, 2 SWS, Language: English, Open in study portal

Practice (Ü) Online

Content

see Module Handbook

2579902, SS 2021, 2 SWS, Language: English, Open in study portal

Practice (Ü) Online

Content see Module Handbook

6.212 Course: Management Accounting 2 [T-WIWI-102801]

Responsible:	Prof. Dr. Marcus Wouters
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101498 - Management Accounting

Events						
2579903	Management Accounting 2	2 SWS	Lecture / 🖥	Wouters		
2579904		2 SWS	Practice /	Ebinger		
2579905		2 SWS	Practice /	Ebinger		
Exams						
WT 20/21 79-2579903-B Management Accounting 2 (Bachelor)				Wouters		
79-2579903-M	Management Accounting 2 (Masterv	anagement Accounting 2 (Mastervorzug und Master)				
	2579904 2579905 79-2579903-B	2579904 2579905 79-2579903-B Management Accounting 2 (Bachelor)	2579904 2 SWS 2579905 2 SWS 79-2579903-B Management Accounting 2 (Bachelor)	2579904 2 SWS Practice / I 2579905 2 SWS Practice / I 79-2579903-B Management Accounting 2 (Bachelor)		

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 120minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Recommendation

It is recommended to take part in the course "Management Accounting 1" before this course.

Annotation

Students in the Bachelor' program can only take the related tutorial and examination. Students in the Master's program (and Bachelor's students who are already completing examinations for their Master's program) can only take the related tuturial and examination.

Below you will find excerpts from events related to this course:

Management Accounting 2

2579903, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA2 are: cost estimation, product costing and cost allocation, financial performance measures, transfer pricing, strategic performance measurement systems.

We will use international material written in English.

We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).

The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Learning objectives:

• Students have an understanding of theory and applications of management accounting topics. They can use financial information for various purposes in organizations.

Recommendations:

• It is recommended to take part in the course "Management Accounting 1" before this course.

Examination:

• The assessment consists of a written exam (120 min) at the end of each semester (following § 4 (2) No. 1 of the examination regulation).

Workload:

• The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

- Marc Wouters, Frank H. Selto, Ronald W. Hilton, Michael W. Maher: Cost Management Strategies for Business Decisions, 2012, Verlag: McGraw-Hill Higher Education (ISBN-13 9780077132392 / ISBN-10 0077132394)
- Zusätzlich werden Artikel auf ILIAS zur Vergügung gestellt.

2579904, WS 20/21, 2 SWS, Language: English, Open in study portal

Practice (Ü) Online

Content see ILIAS

2579905, WS 20/21, 2 SWS, Language: English, Open in study portal

Practice (Ü) Online

Content see ILIAS

6.213 Course: Management of IT-Projects [T-WIWI-102667]

Responsible:	Dr. Roland Schätzle
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101477 - Development of Business Information Systems

Туре	Credits	Grading scale	Recurrence	Version
Written examination	4,5	Grade to a third	Each summer term	3

Events						
ST 2021	2511214	Management of IT-Projects	2 SWS	Lecture /	Schätzle	
ST 2021	ST 2021 2511215 Übungen zu Management von Informatik-Projekten		1 SWS	Practice / 🖥	Schätzle	
Exams						
WT 20/21	7900014	Management of IT-Projects (Regis	Management of IT-Projects (Registration until 08 February 2021) Oberweis			
ST 2021	7900045	Management of IT-Projects (Regis	lanagement of IT-Projects (Registration until 12 July 2021)			

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment takes place in the form of a written examination (exam) in the amount of 60 minutes. The examination is offered every semester and can be repeated at any regular examination date.

Prerequisite for the participation in the examination is the successful participation in the exercise, which takes place in the summer semester, starting from summer semester 2020. The number of participants in the exercise is limited.

The exact details will be announced in the lecture.

Prerequisites

Prerequisite for the participation in the examination is the successful participation in the exercise, which takes place in the summer semester, starting from summer semester 2020. The number of participants in the exercise is limited.

Below you will find excerpts from events related to this course:

Management of IT-Projects

2511214, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

The lecture deals with the general framework, impact factors and methods for planning, handling, and controlling of IT projects. Especially following topics are addressed:

- project environment
- project organisation
- project planning including the following items:
 - plan of the project structure
 - flow chart
 - project schedule
 - plan of resources
- effort estimation
- project infrastructur
- project controlling
- risk management
- feasibility studies
- decision processes, conduct of negotiations, time management.

Learning objectives:

Students

- explain the terminology of IT project management and typical used methods for planning, handling and controlling,
- apply methods appropriate to current project phases and project contexts,
- consider organisational and social impact factors.

Recommendations:

Knowledge from the lecture Software Engineering is helpful.

Workload:

- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h

Literature

- B. Hindel, K. Hörmann, M. Müller, J. Schmied. Basiswissen Software-Projektmanagement. dpunkt.verlag 2004
- Project Management Institute Standards Committee. A Guide to the Project Management Body of Knowledge (PMBoK guide). Project Management Institute. Four Campus Boulevard. Newton Square. PA 190733299. U.S.A.

Übungen zu Management von Informatik-Projekten

2511215, SS 2021, 1 SWS, Language: German, Open in study portal

Practice (Ü) Online

Content

The general conditions, influencing factors and methods in the planning, execution and control of IT projects are dealt with. In particular, the following topics will be dealt with: Project environment, project organization, project structure plan, effort estimation, project infrastructure, project control, decision-making processes, negotiation, time management. The lecture is accompanied by exercises in the form of tutorials. The date of the exercise will be announced later.

6.214 Course: Managing New Technologies [T-WIWI-102612] Т Dr. Thomas Reiß **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon) Type Credits **Grading scale** Recurrence Version Written examination 3 Grade to a third Each summer term 2 **Events** ST 2021 2545003 2 SWS Lecture / Reiß Managing New Technologies Exams WT 20/21 7900189 Reiß Managing New Technologies Legend: 🖥 Online, 🔀 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Written exam 100% following §4, Abs. 2.

Prerequisites None

Recommendation

None

Annotation

The credit points for T-WIWI-102612 "Management of New Technologies" were reduced to 3 credit points in the 2019 summer semester.

Below you will find excerpts from events related to this course:

Managing New Technologies

2545003, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Literature

- Hausschildt/Salomo: Innovationsmanagement; Borchert et al.: Innovations- und Technologiemanagement;
- Specht/Möhrle; Gabler Lexikon Technologiemanagement

Die relevanten Auszüge und zusätzlichen Quellen werden in der Veranstaltung bekannt gegeben.

6.215 Course: Market Engineering: Information in Institutions [T-WIWI-102640]

Responsible:	Prof. Dr. Christof Weinhardt
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101409 - Electronic Markets
	M-WIWI-101446 - Market Engineering
	M-WIWI-101453 - Applied Strategic Decisions
	M-WIWI-102754 - Service Economics and Management
	M-WIWI-104813 - Information Systems: Internet-based Markets and Services
	,

Туре	Credits	Grading scale	Recurrence	Version
Written examination	4,5	Grade to a third	Each summer term	1

Events					
ST 2021	2540460	Market Engineering: Information in Institutions	2 SWS	Lecture / 🖥	Weinhardt, Straub
ST 2021	2540461	Übungen zu Market Engineering: Information in Institutions	1 SWS	Practice / 🖥	Golla

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulations). By successful completion of the exercises (§4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) up to 6 bonus points can be obtained. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by max. one grade level (0.3 or 0.4).

Prerequisites

None

Below you will find excerpts from events related to this course:

Market Engineering: Information in Institutions

2540460, SS 2021, 2 SWS, Language: English, Open in study portal

Literature

- Roth, A., The Economist as Engineer: Game Theory, Experimental Economics and Computation as Tools for Design Economics. Econometrica 70(4): 1341-1378, 2002.
- Weinhardt, C., Holtmann, C., Neumann, D., Market Engineering. Wirtschaftsinformatik, 2003.
- Wolfstetter, E., Topics in Microeconomics Industrial Organization, Auctions, and Incentives. Cambridge, Cambridge University Press, 1999.
- Smith, V. "Theory, Experiments and Economics", The Journal of Economic Perspectives, Vol. 3, No. 1, 151-69 1989

Lecture (V) Online

Klarmann

6.216 Course: Market Research [T-WIWI-107720] Т Prof. Dr. Martin Klarmann **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-101510 - Cross-Functional Management Accounting M-WIWI-101647 - Data Science: Evidence-based Marketing M-WIWI-105312 - Marketing and Sales Management Credits **Grading scale** Recurrence Version Type Grade to a third Examination of another type 4,5 Each summer term 2 **Events** ST 2021 2571150 Market Research 2 SWS Lecture / Klarmann ST 2021 2571151 Market Research Tutorial 1 SWS Practice / Honold Exams

Legend: Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

7900015

The assessment is carried out (according to §4(2), 3 SPO) in the form of a written open book exam. In the summer term 2021, the written open book exam will either take place in the lecture hall or online, depending on further pandemic developments.

Further details on the open book exam will be announced in the lecture.

Market Research

Prerequisites

ST 2021

None

Recommendation

None

Annotation

Please note that this course has to be completed successfully by students interested in master thesis positions at the Marketing & Sales Research Group.

Below you will find excerpts from events related to this course:

Market Research

2571150, SS 2021, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

Within the lecture, essential statistical methods for measuring customer attitudes (e.g. satisfaction measurement), understanding customer behavior and making strategic decisions will be discussed. The practical use as well as the correct handling of different survey methods will be taught, such as experiments and surveys. To analyze the collected data, various analysis methods are presented, including hypothesis tests, factor analyses, cluster analyses, variance and regression analyses. Building on this, the interpretation of the results will be discussed.

Topics addressed in this course are for example:

- Theoretical foundations of market research
- Statistical foundations of market research
- Measuring customer attitudes
- Understanding customer reactions
- Strategical decision making

The aim of this lecture is to give an overview of essential statistical methods. In the lecture students learn the practical use as well as the correct handling of different statistical survey methods and analysis procedures. In addition, emphasis is put on the interpretation of the results after the application of an empirical survey. The derivation of strategic options is an important competence that is required in many companies in order to react optimally to customer needs.

The assessment is carried out (according to §4(2), 3 SPO) in the form of a written open book exam.

The total workload for this course is approximately 135.0 hours.

Presence time: 30 hours

Preparation and wrap-up of the course: 45.0 hours

Exam and exam preparation: 60.0 hours

Please note that this course has to be completed successfully by students interested in master thesis positions at the chair of marketing.

Literature

Homburg, Christian (2016), Marketingmanagement, 6. Aufl., Wiesbaden.

6.217 Course: Marketing Analytics [T-WIWI-103139]

Responsible:	Prof. Dr. Martin Klarmann
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101647 - Data Science: Evidence-based Marketing

Type	Credits	Grading scale	Recurrence	Version
Examination of another type	4,5	Grade to a third	Each winter term	5

Events					
WT 20/21	2572170	Marketing Analytics	2 SWS	Lecture / 🖥	Klarmann
WT 20/21	2572171	Marketing Analytics Tutorial	1 SWS	Practice /	Klarmann
Exams					
WT 20/21	/T 20/21 7900082 Marketing Analytics Klarmann			Klarmann	

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment (Working on tasks in groups during the lecture).

Prerequisites

The prerequisite for taking the course is the successful completion of the course "Market Research".

Recommendation

It is strongly recommended to complete the course "Market Research" prior to taking the "Marketing Analytics" course.

Annotation

"Marketing Analytics" will be offered as a block course in the winter term 20/21 with an alternative exam assessment. For further information please contact the Marketing and Sales Research Group (marketing.iism.kit.edu). Exchange students can bypass the requirement of passing Market Research if they can prove that they possess sufficient statistical knowledge based on courses attended at their home institution. This will be examined individually by the Marketing & amp; Sales Research Group.

Below you will find excerpts from events related to this course:

Marketing Analytics

2572170, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

In this course various relevant market research questions are addressed, as for example measuring and understanding customer attitudes, preparing strategic decisions and sales forecasting. In order to analyze these questions, students learn to handle social media data, panel data, nested observations and experimental design. To analyze the data, advanced methods, as for example multilevel modeling, structural equation modeling and return on marketing models are taught. Also, problems of causality are addressed in-depth. The lecture is accompanied by a computer-based exercise, in the course of which the methods are applied practically.

Students

- receive based on the course market research an overview of advanced empirical methods
- learn in the course of the lecture to handle advanced data collection and data analysis methods
- are based on the acquired knowledge able to interpret results and derive strategic implications

Total workload for 4.5 ECTS: ca. 135 hours.

In order to attend Marketing Analytics, students are required to have passed the course Market Research.

Exchange students can bypass the requirement of passing Market Research if they can prove that they possess sufficient statistical knowledge based on courses attended at their home institution. This will be examined individually by the Marketing & Sales Research Group.

For further information please contact the Marketing and Sales Research Group (marketing.iism.kit.edu).

Organizational issues

Blockveranstaltung

Literature

- Hanssens, Dominique M., Parsons, Leonard J., Schultz, Randall L. (2003), Market response models: Econometric and time series analysis, 2nd ed, Boston.
- Gelman, Andrew, Hill, Jennifer (2006), Data analysis using regression and multilevel/hierarchical models, New York.
- Cameron, A. Colin, Trivedi, Pravin K. (2005), Microeconometrics: methods and applications, New York.
- Chapman, Christopher, Feit, Elea M. (2015), R for Marketing Research and Analytics, Cham.
- Ledolter, Johannes (2013), Data mining and business analytics with R, New York.

6.218 Course: Marketing Strategy Business Game [T-WIWI-102835] Т Prof. Dr. Martin Klarmann **Responsible: Organisation:** KIT Department of Economics and Management Part of: M-WIWI-101510 - Cross-Functional Management Accounting M-WIWI-105312 - Marketing and Sales Management Credits **Grading scale** Recurrence Version Туре Grade to a third Examination of another type 1,5 Each summer term 1 **Events** ST 2021 1 SWS Block / 2571183 Marketing Strategy Business Game Klarmann, Mitarbeiter

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment (alternative exam assessment) consists of a group presentation and a subsequent round of questions totalling 20 minutes.

Prerequisites

None

Recommendation

None

Annotation

Please note that only one of the courses from the election block can be chosen in the module.

Please note: The number of participants for this course is limited. The Marketing and Sales Research Group typically provides the possibility to attend a course with 1.5 ECTS points in the respective module to all students. Participation in a specific course cannot be guaranteed.

In order to participate in this course, you need to apply. Applications are usually accepted at the start of the lecture period in summer term. Detailed information on the application process is usually provided on the website of the Marketing and Sales Research Group (marketing.iism.kit.edu) shortly before the lecture period in summer term starts.

Below you will find excerpts from events related to this course:

Marketing Strategy Business Game

2571183, SS 2021, 1 SWS, Language: German, Open in study portal

Block (B) Online

Content

Using Markstrat, a marketing strategy business game, students work in groups representing a company that competes on a simulated market against the other groups' companies.

Students

- are able to operate the strategic marketing simulation software "Markstrat"

- are able to take strategic marketing decisions in groups

- know how to apply strategic marketing concepts to practical contexts (e.g. for market segmentation, product launches, coordination of the marketing mix, market research, choice of the distribution channel or competitive behavior)

- are capable to collect and to select information usefully with the aim of decision-making

- are able to react appropriately to predetermined market conditions

- know how to present their strategies in a clear and consistent way

- are able to talk about the success, problems, critical incidents, external influences and strategy changes during the experimental game and to reflect and present their learning success

Non exam assessment (following §4(2), 3 of the examination regulation).

The total workload for this course is approximately 45.0 hours. For further information see German version.

- Please note that only one of the courses from the election block can be chosen in the module.
- Please note: The number of participants for this course is limited. The Marketing and Sales Research Group typically provides the possibility to attend a course with 1.5 ECTS in the respective module to all students. Participation in a specific course cannot be guaranteed.
- In order to participate in this course, you need to apply. Applications are usually accepted at the start of the lecture period in summer term. Detailed information on the application process is usually provided on the website of the Marketing and Sales Research Group (marketing.iism.kit.edu) shortly before the lecture period in summer term starts.

Organizational issues

Termine werden bekannt gegeben

Literature

Homburg, Christian (2016), Marketingmanagement, 6. Aufl., Wiesbaden.

6.219 Course: Master Thesis [T-WIWI-103142] Т Studiendekan der KIT-Fakultät für Informatik **Responsible:** Studiendekan der KIT-Fakultät für Wirtschaftswissenschaften Organisation: KIT Department of Economics and Management M-WIWI-104833 - Module Master Thesis Part of: Credits **Grading scale** Туре Version **Final Thesis** Grade to a third 30 1 **Competence Certificate** see module description Prerequisites

see module description

Final Thesis

This course represents a final thesis. The following periods have been supplied:

Submission deadline6 monthsMaximum extension period3 monthsCorrection period8 weeks

6.220 Course: Mathematics for High Dimensional Statistics [T-WIWI-111247]

Responsible:	Prof. Dr. Oliver Grothe
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101473 - Mathematical Programming M-WIWI-101637 - Analytics and Statistics
	M-WIWI-103289 - Stochastic Optimization

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	4,5	Grade to a third	Irregular	1

Events					
ST 2021	2550562	Mathematische Grundlagen hochdimensionaler Statistik	2 SWS	Lecture /	Grothe
ST 2021	2550563	Übung zu Mathematische Grundlagen hochdimensionaler Statistik	2 SWS	Practice / 🖥	Grothe, Rieger

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of an oral exam (30 min.) taking place in the recess period.

Prerequisites None

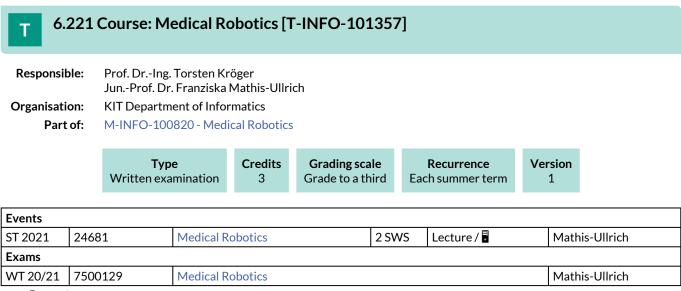
Recommendation

Basic knowledge of mathematics and statistics is assumed. Knowledge in multivariate statistics is an advantage, but not necessary for the course.

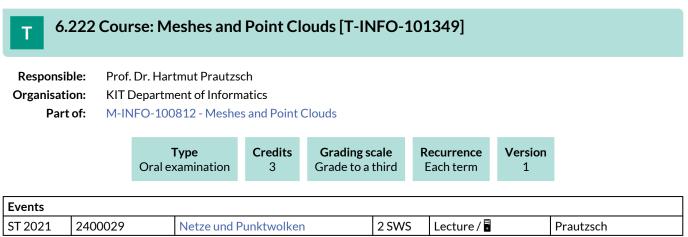
Below you will find excerpts from events related to this course:

	V	Mathematische Grundlagen hochdimensionaler Statistik 2550562, SS 2021, 2 SWS, Open in study portal	Lecture (V) Online
--	---	---	-----------------------

Content

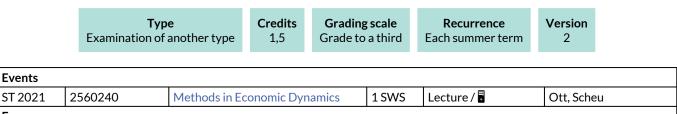

Content:

The lecture focuses on modelling statistical objects (random vectors, random matrices and random graphs) in high dimensions. It deals with concentration inequalities that limit the fluctuations of such objects as well as complexity measures for quantities and functions. The theory is transferred to well-known and widespread applications such as neighbourhood detection in networks, statistical learning theory and LASSO.


Learning objectives:

Students are able to

- name and justify statistical properties of high-dimensional objects (vectors, matrices, functions).
- describe and explain differences in the behaviour between low- and high-dimensional random objects.
- name procedures for assess uncertainties in statistical models and apply them in simple examples.
- decide well-founded which modeling of high-dimensional structures is best suited in a specific situation.
- transform data into lower dimensions and quantify approximation errors.
- understand basic proofs in high-dimensional statistics using examples.
- develop, implement and evaluate smaller simulations in a programming language of their choice.


Legend: Dolline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🐼 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.223 Course: Methods in Economic Dynamics [T-WIWI-102906]

Responsible:	Prof. Dr. Ingrid Ott
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101514 - Innovation Economics

Exams					
ST 2021	7900108	Methods in Economic Dynamics	Ott		
Legend: Online. S Blended (On-Site/Online). On-Site. × Cancelled					

Competence Certificate

Alternative exam assessment.

Prerequisites None

Recommendation

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012] and Economics II [2600014]. Further, it is assumed that students have interest in using quantiative-mathematical methods.

Below you will find excerpts from events related to this course:

V	Methods in Economic Dynamics	Lecture (V)
V	2560240, SS 2021, 1 SWS, Language: German/English, Open in study portal	Online

Content

The economic exploitation of inventions is an important part of innovation economics. Intellectual property rights such as patents or trademarks play a central role. Within this workshop, the recording, processing and analysis of such intellectual property rights will be deepened, e.g. considering specific technologies. Students will learn how to work with relational databases, the econometric evaluation of recorded data, and methods for visualising them.

Learning objectives:

The student

- learns to query data sources.
- is able to analyse data with statistical methods.
- visualises and interprets data evaluations (e.g. using dashboards or methods of network analysis).

Recommendations:

An interest in working with data, basic knowledge on databases as well as basic knowledge in economics and statistics are advantageous.

Workload:

The total workload for this course is approximately 45 hours.

- Classes: ca. 5 h
- Self-study: ca. 40 h

Assessment:

Non exam assessment according to § 4 paragraph 3 of the examination regulation (SPO 2015).

Literature

Relevante Literatur wird in der Vorlesung bekanntgegeben. (Relevant literature will be announced in the lecture.)

6.224 Course: Methods in Innovation Management [T-WIWI-110263] **Responsible:** Dr. Daniel Jeffrey Koch Organisation: KIT Department of Economics and Management Part of: M-WIWI-101507 - Innovation Management M-WIWI-101507 - Innovation Management Credits **Grading scale** Recurrence Version Туре Grade to a third Examination of another type 3 Each winter term 1 **Events** WT 20/21 2545107 2 SWS Seminar / Koch Methoden im Innovationsmanagement Exams WT 20/21 7900306 Weissenberger-Eibl Methods in Innovation Management

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessments (§4(2), 3 SPO). The final grade is composed 75% of the grade of the written paper and 25% of the grade of the presentation.

Prerequisites

None.

Recommendation

Prior attendance of the course "Innovation Management: Concepts, Strategies and Methods" is recommended.

Below you will find excerpts from events related to this course:

V

Methoden im Innovationsmanagement

2545107, WS 20/21, 2 SWS, Language: German, Open in study portal

Seminar (S) Online

Content

The seminar "Methods in Innovation Management" aims at the discussion and development of different methods for the structured generation of ideas in selected contexts. In a block seminar, methods and contexts are discussed, from which seminar topics are defined with the participants. These topics are to be worked on independently using methods and procedures. The results will be presented at a presentation date and then a written seminar paper will be prepared. This means that creativity methods and their combination will be presented and applied. The methods are worked on in a structured form and process-like sequence in order to clarify the advantages and disadvantages of different methods.

Literature

Werden in der ersten Veranstaltung bekannt gegeben.

Responsible:Prof. Dr. Oliver SteinOrganisation:KIT Department of Economics and ManagementPart of:M-WIWI-101473 - Mathematical Programming M-WIWI-102832 - Operations Research in Supply Chain Management M-WIWI-103289 - Stochastic Optimization						
		Type Written examination	Credits 4,5	Grading scale Grade to a third	Recurrence Irregular	Version 1

Competence Certificate

The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.

The examination is held in the semester of the lecture and in the following semester.

The examination can also be combined with the examination of *Mixed Integer Programming II* [25140]. In this case, the duration of the written examination takes 120 minutes.

Prerequisites

None

Recommendation

It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Annotation

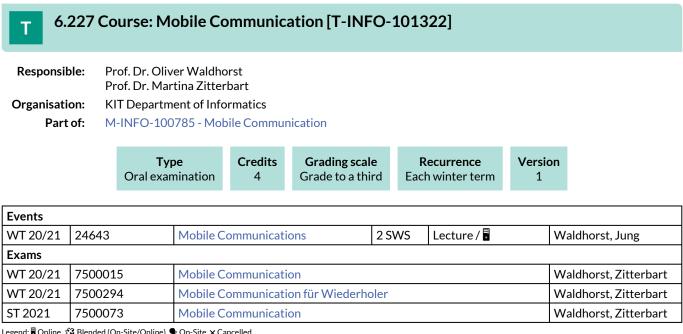
The lecture is offered irregularly. The curriculum of the next three years is available online (kop.ior.kit.edu).

Competence Certificate

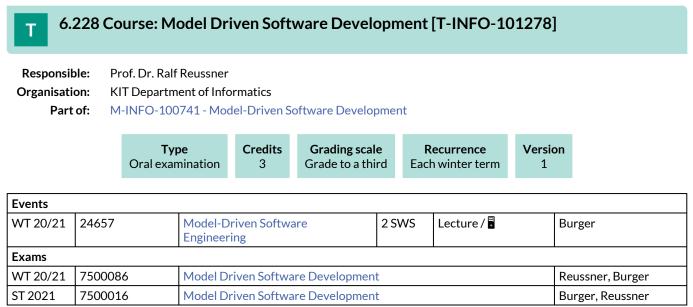
The assessment of the lecture is a written examination (60 minutes) according to \$4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The examination is held in the semester of the lecture and in the following semester.

The examination can also be combined with the examination of *Mixed Integer Programming I* [2550138]. In this case, the duration of the written examination takes 120 minutes.

Prerequisites


None

Recommendation


It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Annotation

The lecture is offered irregularly. The curriculum of the next three years is available online (kop.ior.kit.edu).

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.229 Course: Modeling and Analyzing Consumer Behavior with R [T-WIWI-102899]

Responsible:	Dr. Verena Dorner Prof. Dr. Christof Weinhardt
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101448 - Service Management M-WIWI-101506 - Service Analytics M-WIWI-103118 - Data Science: Data-Driven User Modeling

Туре	Credits	Grading scale	Recurrence	Version	
Written examination	4,5	Grade to a third	Each summer term	1	

Events						
ST 2021	2540470	Modeling and Analyzing Consumer Behavior with R	2 SWS	Lecture / 🖥	Knierim	
ST 2021	2540471	Übung zu Modeling and Analyzing Consumer Behaviour with R	1 SWS	Practice /	Knierim, Giebenhain	

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulations). By successful completion of the exercises (§4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites

None

Recommendation

Annotation

Number of participants limited.

Below you will find excerpts from events related to this course:

Modeling and Analyzing Consumer Behavior with R 2540470, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Literature

Field, A., Miles, J., Field, Z., Discovering Statistics Using R, SAGE 2014

Jones, O., Maillardet, R., Robinson, A., Scientific Programming and Simulation Using R, Chapmann & Hall / CRC Press 2009

Venables, W.N., Smith, D.M. and the R Core Team, "An Introduction to R", 2012 (Version 2.15.2), http://cran.r-project.org/doc/manuals/R-intro.pdf

Wickham, Hadley, ggplot2: Elegant Graphics for Data Analysis (Use R!), Springer 2009 (2nd edition)

6.230 Course: Modeling and OR-Software: Advanced Topics [T-WIWI-106200] Prof. Dr. Stefan Nickel **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-102808 - Digital Service Systems in Industry M-WIWI-102832 - Operations Research in Supply Chain Management Credits **Grading scale** Recurrence Version Туре Grade to a third Examination of another type 4,5 Each winter term 2

Events							
WT 20/21	WT 20/212550490Modellieren und OR-Software: Fortgeschrittene Themen3 SWSPractical course				Bakker		
Exams							
WT 20/21 7900345 Modeling and OR-Software: Advanced Topics					Nickel		

Legend: Doline, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment is a 120 minutes examination, including a written and a practical part (according to §4(2), 1 of the examination regulation).

The examination is held in the term of the software laboratory and the following term.

Prerequisites

None.

Recommendation

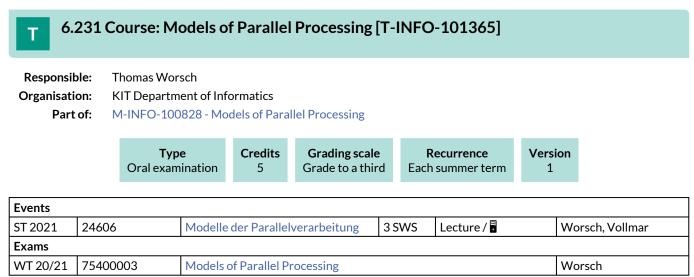
Basic knowledge as conveyed in the module *Introduction to Operations Research* is assumed. Successful completion of the course *Modeling and OR-Software: Introduction*.

Annotation

Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course. The lecture is held in every term. The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Modellieren und OR-Software: Fortgeschrittene ThemenPrace2550490, WS 20/21, 3 SWS, Language: German, Open in study portalPrace


Practical course (P) Online

Content

The advanced course is designated for Master students that already attended the introductory course or gained equivalent experience elsewhere, e.g. during a seminar or bachelor thesis. We will work on advanced topics and methods in OR, among others cutting planes, column generation and constraint programming. The Software used for the exercises is IBM ILOG CPLEX Optimization Studio. The associated modelling programming languages are OPL and ILOG Script.

Organizational issues

die genauen Termine werden auf der Homepage bekannt gegeben

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.232 Course: Multicore Programming in Practice: Tools, Models, Languages [T-INFO-101565]

Responsible: Prof. Dr. Walter Tichy

Organisation: KIT Department of Informatics

Part of: M-INFO-100985 - Multicore Programming in Practice: Tools, Models, Languages

6.233 Course: Multi-Dimensional Signal Processing and Image Exploitation with Graphic Cards and Other Manycore-Processors [T-INFO-106278]

Responsible:	Prof. DrIng. Jürgen Beyerer Dr. Thomas Perschke
Organisation:	KIT Department of Informatics
Part of:	M-INFO-103154 - Multi-dimensional Signal Processing and Image Exploitation with Graphic Cards and Other Manycore-Processors

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	3	Grade to a third	Each winter term	1

Events						
		Multi-dimensional signal processing and image exploitation with graphic cards and other manycore- processors	2 SWS	Lecture / 🖥	Perschke	
Exams						
WT 20/21	750002400021	Multi-dimensional signal processing and image exploitation with graphic cards and other manycore-processors				
ST 2021	7500309	Multi-Dimensional Signal Processing and Image Exploitation with Graphic Cards and Other Manycore-Processors				

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

none.

6.234 Course: Multivariate Statistical Methods [T-WIWI-103124]

Responsible:	Prof. Dr. Oliver Grothe		
Organisation:	KIT Department of Economics and Management		
Part of:	M-WIWI-101473 - Mathematical Programming M-WIWI-101637 - Analytics and Statistics M-WIWI-101639 - Econometrics and Statistics II M-WIWI-103289 - Stochastic Optimization		

Ту	ре	Credits	Grading scale	Recurrence	Version
Written ex	amination	4,5	Grade to a third	Each summer term	1

Events					
ST 2021	2550554	Multivariate Verfahren	2 SWS	Lecture /	Grothe
ST 2021	2550555	Übung zu Multivariate Verfahren	2 SWS	Practice / 🖥	Grothe, Kächele

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 60minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

A bonus program can improve the grade by one grade level (i.e. by 0.3 or 0.4).

The exam is offered every semester. Re-examinations are offered only for repeaters.

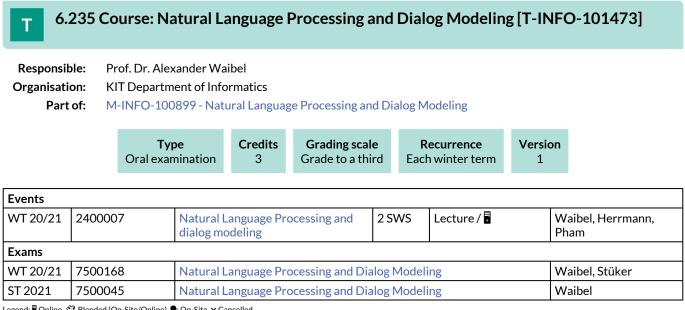
Prerequisites

None

Recommendation

The course covers highly advanced statistical methods with a quantitative focus. Hence, participants are necessarily expected to have advanced statistical knowledge, e.g. acquired in the course "Advanced Statistics". Without this, participation in the course is not advised.

Previous attendance of the course Analysis of Multivariate Data is recommended. Alternatively, the script can be provided to interested students.


Below you will find excerpts from events related to this course:

Multivariate Verfahren 2550554, SS 2021, 2 SWS, Open in study portal

Lecture (V) Online

Literature Skript zur Vorlesung

Legend: 🖥 Online, 🗱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Natural Language Processing and dialog modeling

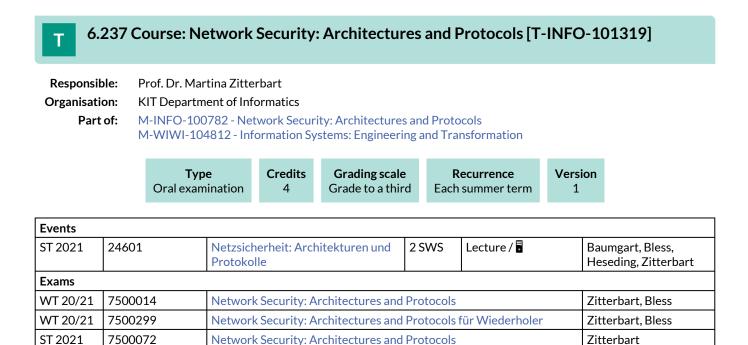
2400007, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

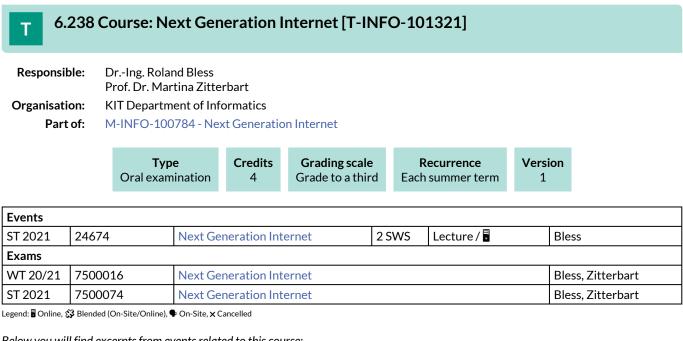
Content

In order that we can communicate with a computer successfully, it has to be able to interpret sentences like "I don't understand what you mean by this!". For that it has to know what "to not understand" means and what "by this" refers to. This lecture gives an overview of different subject areas and applied methods in Natural Language Processing (NLP) and dialog modeling. Concerning NLP, the covered topics will vary in complexity such as Part-of-Speech Tagging, Sentiment Analysis, Word Sense Disambiguation (WSD) and Question Answering (QA). At the same time, various techniques will be presented with which the corresponding components can be realized. Among those are Conditional Random Fields (CRFs) and Maximum Entropy Models (MaxEnt). Furthermore, topics and methods of NLP will be emphasized which are especially relevant for realizing spoken dialog systems. In Dialog Modeling different areas like Social Dialog, Goal-Oriented Dialog, Multimodal Dialog and Error Handling will be addressed. These involve additional techniques like Partially Observable Markov Decision Processes (POMDPs).

6.236 Course: Natural Language Processing and Software Engineering [T-INFO-101272]


Responsible:Prof. Dr.-Ing. Anne KoziolekOrganisation:KIT Department of InformaticsPart of:M-INFO-100735 - Natural Language

M-INFO-100735 - Natural Language Processing and Software Engineering



Events					
WT 20/21	24187	Sprachverarbeitung in der Softwaretechnik	2 SWS	Lecture /	Koziolek, Hey
Exams					
WT 20/21	7543231	Natural Language Processing and Sof	tware Engi	ineering	Koziolek, Tichy

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

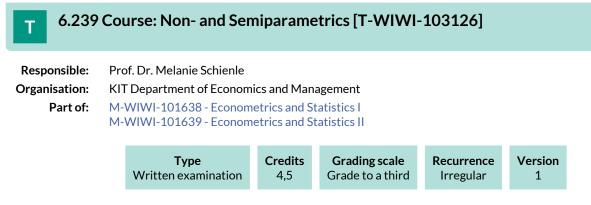
Below you will find excerpts from events related to this course:

V

Next Generation Internet

24674, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online


Content

The lecture focuses on current developments in Internet-based network technologies. First, architectural principles of today's Internet are presented and discussed, subsequently nowadays and future challenges are motivated. Methods for quality-of-service support and transport of multi-media stream as well as newer transport protocols and group communication support are presented. Deployment of the presented technologies in IP-based networks are discussed. The lecture presents advanced approaches such as programmable networks and network virtualization as well as newer approaches and protocols for routing, satellite networking, and peer-to-peer networks.

Literature

James F. Kurose, and Keith W. Ross Computer Networking 6th edition, Addison-Wesley/Pearson, 2013, ISBN 978-0-273-76896-8, Chapters 1, 2.6 (P2P), 4 (Network Layer), 7.5 (Scheduling, IntServ, DiffServ, RSVP) Weiterführende Literatur

wird in der Vorlesung bekanntgegeben.

Competence Certificate

The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites

None

Recommendation

Knowledge of the contents covered by the course "Applied Econometrics" [2520020]

Annotation

The course takes place every second winter semester: 2018/19 then 2020/21

6.240 Course: Nonlinear Optimization I [T-WIWI-102724]

Responsible:	Prof. Dr. Oliver Stein
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101473 - Mathematical Programming

Events					
WT 20/21	2550111	Nonlinear Optimization I	2 SWS	Lecture / 🖥	Stein
WT 20/21	2550112	Exercises Nonlinear Optimization I + II		Practice /	Stein
Exams					
WT 20/21	7900086_WS2021_HK	Nonlinear Optimization I			Stein

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The exam takes place in the semester of the lecture and in the following semester.

The examination can also be combined with the examination of Nonlinear Optimization II [2550113]. In this case, the duration of the written examination takes 120 minutes.

Prerequisites

The module component exam T-WIWI-103637 "Nonlinear Optimization I and II" may not be selected.

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization I

2550111, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

The lecture treats the minimization of smooth nonlinear functions without constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality condtions
- Algorithms (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of optimization problems with constraints forms the contents of the lecture "Nonlinear Optimization II". The lectures "Nonlinear Optimization II" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:

The student

- knows and understands fundamentals of unconstrained nonlinear optimization,
- is able to choose, design and apply modern techniques of unconstrained nonlinear optimization in practice.

Literature

O. Stein, Grundzüge der Nichtlinearen Optimierung, SpringerSpektrum, 2018

Weiterführende Literatur:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
- O. Güler, Foundations of Optimization, Springer, 2010
- H.Th. Jongen, K. Meer, E. Triesch, Optimization Theory, Kluwer, 2004
- J. Nocedal, S. Wright, Numerical Optimization, Springer, 2000

6.241 Course: Nonlinear Optimization I and II [T-WIWI-103637]

Responsible:	Prof. Dr. Oliver Stein
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101473 - Mathematical Programming

Events					
WT 20/21	2550111	Nonlinear Optimization I	2 SWS	Lecture / 🖥	Stein
WT 20/21	2550112	Exercises Nonlinear Optimization I + II		Practice /	Stein
WT 20/21	2550113	Nonlinear Optimization II	2 SWS	Lecture /	Stein
Exams					
WT 20/21	7900088_WS2021_HK	Nonlinear Optimization I and II			Stein

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consits of a written exam (120 minutes) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.

The exam takes place in the semester of the lecture and in the following semester.

Prerequisites

None.

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization I

2550111, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

The lecture treats the minimization of smooth nonlinear functions without constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality conditions
- Algorithms (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of optimization problems with constraints forms the contents of the lecture "Nonlinear Optimization II". The lectures "Nonlinear Optimization II" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:

The student

- knows and understands fundamentals of unconstrained nonlinear optimization,
- is able to choose, design and apply modern techniques of unconstrained nonlinear optimization in practice.

Literature

O. Stein, Grundzüge der Nichtlinearen Optimierung, SpringerSpektrum, 2018

Weiterführende Literatur:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
- O. Güler, Foundations of Optimization, Springer, 2010
- H.Th. Jongen, K. Meer, E. Triesch, Optimization Theory, Kluwer, 2004
- J. Nocedal, S. Wright, Numerical Optimization, Springer, 2000

Nonlinear Optimization II

2550113, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions
- Algorithms (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

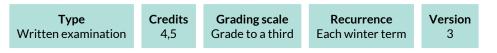
The treatment of optimization problems *without* constraints forms the contents of the lecture "Nonlinear Optimization I". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively *in the same semester*.

Learning objectives:

The student

- knows and understands fundamentals of constrained nonlinear optimization,
- is able to choose, design and apply modern techniques of constrained nonlinear optimization in practice.

Literature


O. Stein, Grundzüge der Nichtlinearen Optimierung, SpringerSpektrum, 2018

Weiterführende Literatur:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
- O. Güler, Foundations of Optimization, Springer, 2010
- H.Th. Jongen, K. Meer, E. Triesch, Optimization Theory, Kluwer, 2004
- J. Nocedal, S. Wright, Numerical Optimization, Springer, 2000

6.242 Course: Nonlinear Optimization II [T-WIWI-102725]

Responsible:	Prof. Dr. Oliver Stein
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101473 - Mathematical Programming

Events					
WT 20/21	2550112	Exercises Nonlinear Optimization I + II		Practice /	Stein
WT 20/21	2550113	Nonlinear Optimization II	2 SWS	Lecture /	Stein
Exams					
WT 20/21	7900087_WS2021_HK	Nonlinear Optimization II			Stein

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consits of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.

The exam takes place in the semester of the lecture and in the following semester.

The exam can also be combined with the examination of *Nonlinear Optimization I* [2550111]. In this case, the duration of the written exam takes 120 minutes.

Prerequisites

None.

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization II

2550113, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions
- Algorithms (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

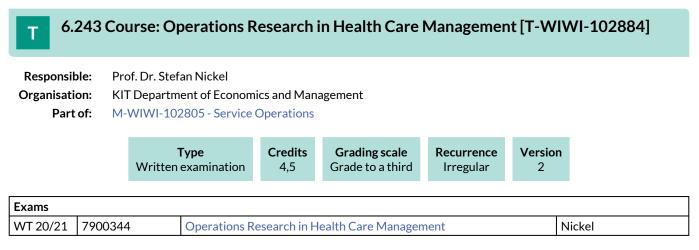
The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of optimization problems *without* constraints forms the contents of the lecture "Nonlinear Optimization I". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively *in the same semester*.

Learning objectives:

The student


- knows and understands fundamentals of constrained nonlinear optimization,
- is able to choose, design and apply modern techniques of constrained nonlinear optimization in practice.

Literature

O. Stein, Grundzüge der Nichtlinearen Optimierung, SpringerSpektrum, 2018

Weiterführende Literatur:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
- O. Güler, Foundations of Optimization, Springer, 2010
- H.Th. Jongen, K. Meer, E. Triesch, Optimization Theory, Kluwer, 2004
- J. Nocedal, S. Wright, Numerical Optimization, Springer, 2000

Competence Certificate

The assessment is a 60 minutes written examination (according to §4(2), 1 of the examination regulation).

The examination is held in the term of the lecture and the following lecture.

Prerequisites

None

Recommendation

Basic knowledge as conveyed in the module "Introduction to Operations Research" is assumed.

Annotation

The course is offered irregularly. Planned lectures for the next three years can be found in the internet at http://dol.ior.kit.edu/english/Courses.php.

6.244 Course: Operations Research in Supply Chain Management [T-WIWI-102715]

Responsible:	Prof. Dr. Stefan Nickel
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101473 - Mathematical Programming M-WIWI-102805 - Service Operations M-WIWI-102832 - Operations Research in Supply Chain Management M-WIWI-103289 - Stochastic Optimization

Туре	Credits	Grading scale	Recurrence	Version
Written examination	4,5	Grade to a third	Irregular	2

Events						
WT 20/21	2550480	Operations Research in Supply Chain Management	2 SWS	Lecture / 🖥	Nickel	
WT 20/21	2550481	Übungen zu OR in Supply Chain Management	1 SWS	Practice / 🖥	Dunke	
Exams						
WT 20/21	7900343	Operations Research in Supply Chain Management Nickel				

Legend: 🖥 Online, 🔀 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment is a 60 minutes written examination (according to §4(2), 1 of the examination regulation).

The examination is held in the term of the lecture and the following lecture.

Prerequisites

None

Recommendation

Basic knowledge as conveyed in the module Introduction to Operations Research and in the lectures Facility Location and Strategic SCM, Tactical and operational SCM is assumed.

Annotation

The course is offered irregularly. Planned lectures for the next three years can be found in the internet at http://dol.ior.kit.edu/ english/Courses.php.

Below you will find excerpts from events related to this course:

Operations Research in Supply Chain Management 2550480, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

Supply Chain Management constitutes a general tool for logistics process planning in supply networks. To an increasing degree quantitative decision support is provided by methods and models from Operations Research. The lecture "OR in Supply Chain Management" conveys concepts and approaches for solving practical problems and presents an insight to current research topics. The lecture's focus is set on modeling and solution methods for applications originating in different domains of a supply chain. The emphasis is put on mathematical methods like mixed integer programming, valid inequalities or column generation, and the derivation of optimal solution strategies.

In form and content, the lecture addresses all levels of Supply Chain Management: After a short introduction, the tactical and operational level will be discussed with regard to inventory models, scheduling as well as cutting and packing. The strategic level will be discussed in terms of layout planning. Another main focus of the lecture is the application of methods from online optimization. This optimization discipline has gained more and more importance in the optimization of supply chains over the several past years due to an increasing amount of dynamic data flows.

Literature

- Simchi-Levi, D.; Chen, X.; Bramel, J.: The Logic of Logistics: Theory, Algorithms, and Applications for Logistics and Supply Chain Management, 2nd edition, Springer, 2005
- Simchi-Levi, D.; Kaminsky, P.; Simchi-Levi, E.: Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies, McGraw-Hill, 2000
- Silver, E. A.; Pyke, D. F.; Peterson, R.: Inventory Management and Production Planning and Scheduling, 3rd edition, Wiley, 1998
- Blazewicz, J.: Handbook on Scheduling From Theory to Applications, Springer, 2007
- Pinedo, M. L.: Scheduling Theory, Algorithms, and Systems (3rd edition), Springer, 2008
- Dyckhoff, H.; Finke, U.: Cutting and Packing in Production and Distribution A Typology and Bibliography, Physica-Verlag, 1992
- Borodin, A.; El-Yaniv, R.: Online Computation and Competitive Analysis, Cambridge University Press, 2005
- Francis, R. L.; McGinnis, L. F.; White, A.: Facility Layout and Location: An Analytical Approach, 2nd edition, Prentice-Hall, 1992

6.245 Course: Optimization and Synthesis of Embedded Systems (ES1) [T-INFO-101367]

Responsible:Prof. Dr.-Ing. Jörg HenkelOrganisation:KIT Department of InformaticsPart of:M-INFO-100830 - Optimization

M-INFO-100830 - Optimization and Synthesis of Embedded Systems (ES1)

Type
Oral examinationCredits
3Grading scale
Grade to a thirdRecurrence
Each winter termVersion
1

Events					
WT 20/21	2424143	Optimisation and Synthesis of Embedded Systems (ES1)	2 SWS	Lecture / 🖥	Bauer, Henkel
Exams					
WT 20/21	7500085	VL: Optimization and synthesis of embedded systems (ES1) Henkel			

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.246 Course: Optimization Models and Applications [T-WIWI-110162] Т Dr. Nathan Sudermann-Merx **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-101473 - Mathematical Programming M-WIWI-102832 - Operations Research in Supply Chain Management M-WIWI-103289 - Stochastic Optimization Credits Version **Grading scale** Recurrence Type Written examination 4,5 Grade to a third see Annotations 1 **Events** WT 20/21 2550140 **Optimization Models and** 2 SWS Lecture / Sudermann-Merx, Application Stein Exams WT 20/21 7900090_WS2021_HK Optimization Models and Applications Stein

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The examination will take place for the last time in the winter semester 2020/2021.

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

The prerequisite for participation in the exam is the achievement of a minimum number of points in delivery sheets. Details will be announced at the beginning of the course.

Prerequisites

None.

Annotation

The course will take place for the last time in the winter semester 20/21.

6.247 Course: Optimization under Uncertainty [T-WIWI-106545] Т **Responsible:** Prof. Dr. Steffen Rebennack Organisation: KIT Department of Economics and Management Part of: M-WIWI-103289 - Stochastic Optimization Credits Type **Grading scale** Recurrence Version 4,5 Grade to a third Each winter term Written examination 3 **Events** WT 20/21 2550464 Optimierungsansätze unter Lecture / 🖥 Rebennack Unsicherheit WT 20/21 Practice / Rebennack, Füllner 2550465 Übungen zu Optimierungsansätze unter Unsicherheit WT 20/21 2550466 2 SWS Practice / Rebennack, Füllner Exams WT 20/21 7900240 **Optimization under Uncertainty** Rebennack

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every the semester.

Prerequisites

None.

6.248 Course: Panel Data [T-WIWI-103127] Т **Responsible:** apl. Prof. Dr. Wolf-Dieter Heller Organisation: KIT Department of Economics and Management Part of: M-WIWI-101638 - Econometrics and Statistics I M-WIWI-101639 - Econometrics and Statistics II Credits **Grading scale** Recurrence Version Type Written examination 4,5 Grade to a third Each summer term 1

Events					
ST 2021	2520320	Panel Data	2 SWS	Lecture / 🖥	Heller
ST 2021	2520321	Übungen zu Paneldaten	2 SWS	Practice /	Heller

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

None

Below you will find excerpts from events related to this course:

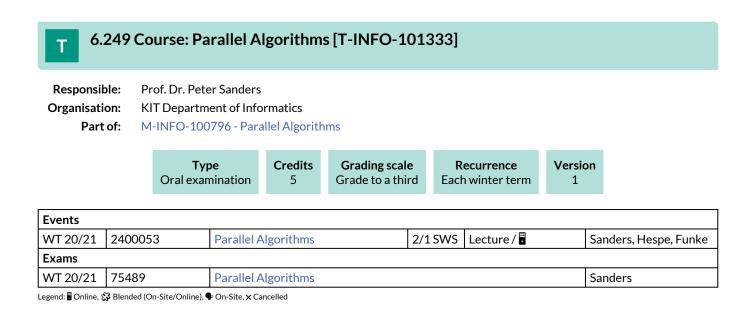
Panel Data

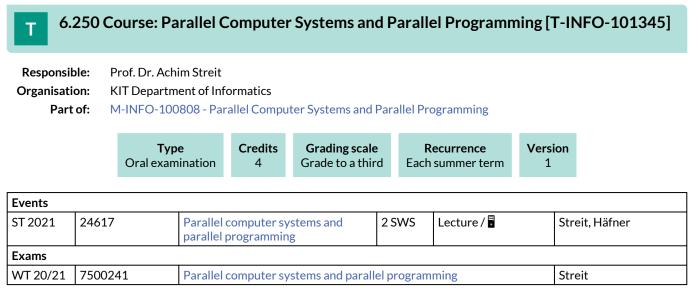
2520320, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

Content: Fixed-Effects-Models, Random-Effects-Models, Time-Demeaning **Workload:** Total workload for 4.5 CP: approx. 135 hours Attendance: 30 hours


Preparation and follow-up: 65 hours


Exam preparation: 40 hours

Exam preparation: 40 hours

Literature

Wooldridge, J. M. (2002). Econometric analysis of cross section and panel data. Cambridge and London: MIT Press. Wooldridge, J. M. (2009). Introductory Econometrics: A Modern Approach (5th ed.). Mason, Ohio: South-Western Cengage Learning.

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.251 Course: Parametric Optimization [T-WIWI-102855]

Responsible:	Prof. Dr. Oliver Stein
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101473 - Mathematical Programming

Events					
WT 20/21	2550115	Parametric Optimization	2 SWS	Lecture /	Stein
WT 20/21	2550116	Übung zu Parametrische Optimierung	2 SWS	Practice / 🖥	Stein, Neumann
Exams					
WT 20/21	7900089_WS2021_HK	Parametric Optimization			Stein

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.

The examination is held in the semester of the lecture and in the following semester.

Prerequisites

None

Recommendation

It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Annotation

The lecture is offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).

Below you will find excerpts from events related to this course:

Parametric Optimization

2550115, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

Parametric optimization deals with the influence of parameters on the solution of optimization problems. In optimization practice, such investigations play a fundamental role in order to be able to assess the quality of a numerically obtained solution or to make quantitative statements about its parameter dependence. Furthermore, a number of parametric optimization methods exist, and parametric problems occur in applications such as game theory, geometric optimization problems, and robust optimization. The lecture gives a mathematically sound introduction to these topics and is structured as follows:

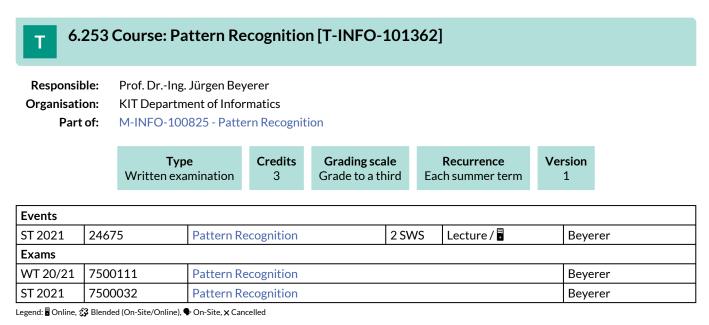
- Introductory examples and terminology
- Sensitivity
- Stability and regularity conditions
- Applications: semi-infinite optimization and Nash games

Remark:

Prior to the attendance of this lecture, it is strongly recommend to acquire basic knowledge on optimization problems in one of the lectures "Global Optimization I and II" and "Nonlinear Optimization I and II".

Learning objectives:

The student


- knows and understands the fundamentals of parametric optimization,
- is able to choose, design and apply modern techniques of parametric optimization in practice.

Literature

- J.F. Bonnans, A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000
- W. Dinkelbach, Sensitivitätsanalysen und parametrische Programmierung, Springer, Berlin, 1969
- J. Guddat, F. Guerra Vasquez, H.Th. Jongen, Parametric Optimization: Singularities, Pathfollowing and Jumps, Wiley, Chichester, and Teubner, Stuttgart, 1990
- R.T. Rockafellar, R.J.B. Wets, Variational Analysis, Springer, Berlin, 1998

T 6.3	252 (Course: Pa	itent Law	/ [T-INFC	D-101310]				
Responsit	ole:	Markus Hössle Matthias Koch							
Organisati Part		KIT Department of Informatics M-INFO-101215 - Intellectual Property Law							
		Typ Written exa		Credits 3	Grading sca Grade to a th		Recurrence ach summer term	Versio 2	n
Events									
ST 2021	2465	6	Patent Law			2 SWS Lecture / 🖥		Hé	össle
Exams									
WT 20/21	7500	0001	001 Patent Law Dreier, Matz				reier, Matz		

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Pattern Recognition

24675, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Literature Weiterführende Literatur

- Richard O. Duda, Peter E. Hart, Stork G. David. Pattern Classification. Wiley-Interscience, second edition, 2001
- K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, second edition, 1997
- R. Hoffman. Signalanalyse und -erkennung. Springer, 1998
- H. Niemann. Pattern analysis and understanding. Springer, second edition, 1990
- J. Schürmann. Pattern classification. Wiley & Sons, 1996
- S. Theodoridis, K. Koutroumbas. Pattern recognition. London: Academic, 2003
- V. N. Vapnik. The nature of statistical learning theory. Springer, second edition, 2000

6.254 Course: Personalization and Services [T-WIWI-102848] Т **Responsible:** Andreas Sonnenbichler Organisation: KIT Department of Economics and Management Part of: M-WIWI-101410 - Business & Service Engineering M-WIWI-105661 - Data Science: Intelligent, Adaptive, and Learning Information Services Credits **Grading scale** Recurrence Version Type Written examination 4,5 Grade to a third see Annotations 1 **Events**

WT 20/21	2540533	Personalization & Services	2 SWS	Lecture	Sonnenbichler, Geyer- Schulz
WT 20/21	2540534	Exercise Personalization & Services	1 SWS	Practice	Sonnenbichler, Geyer- Schulz
Exams					
WT 20/21	7900365	Personalization and Services			Geyer-Schulz

Competence Certificate

The exam is currently not offered.

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

None

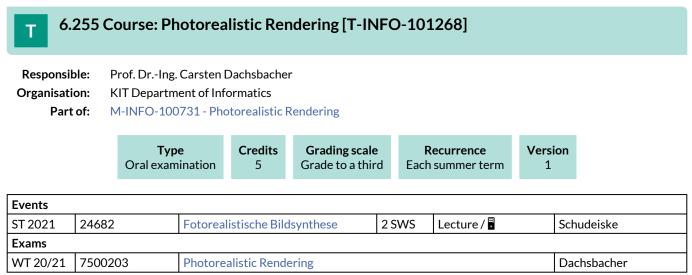
Recommendation

None

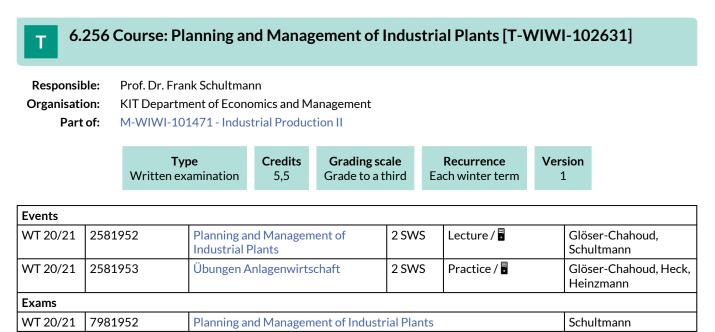
Annotation

The course is currently not offered.

Below you will find excerpts from events related to this course:


Personalization & Services

2540533, WS 20/21, 2 SWS, Language: German, Open in study portal


Lecture (V)

Literature

Die Vorlesung orientiert sich an aktuellen wissenschaftlichen Veröffentlichungen. Die Literaturliste finden Sie nach Themen gegliedert jeweils am Ende der Vorlesungseinheiten.

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (90 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites None

Recommendation

Below you will find excerpts from events related to this course:

Planning and Management of Industrial Plants

2581952, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

Industrial plant management incorporates a complex set of tasks along the entire life cycle of an industrial plant, starting with the initiation and erection up to operating and dismantling.

During this course students will get to know special characteristics of industrial plant management. Students will learn important methods to plan, realize and supervise the supply, start-up, maintenance, optimisation and shut-down of industrial plants. Alongside, students will have to handle the inherent question of choosing between technologies and evaluating each of them. This course pays special attention to the specific characteristics of plant engineering, commissioning and investment.

Literature

Wird in der Veranstaltung bekannt gegeben.

6.257 Course: Portfolio and Asset Liability Management [T-WIWI-103128]

Responsible:	Dr. Mher Safarian
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101639 - Econometrics and Statistics II

Type	Credits	Grading scale	Recurrence	Version
Written examination	4,5	Grade to a third	Each summer term	1

Events					
ST 2021	2520357	Portfolio and Asset Liability Management	2 SWS	Lecture / 🖥	Safarian
ST 2021	2520358	Übungen zu Portfolio and Asset Liability Management	2 SWS	Practice / 🖥	Safarian

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of this course consists of a written examination (following §4(2), 1 SPOs, 180 min.).

Prerequisites None

Below you will find excerpts from events related to this course:

Lecture (V) Online

Content

Learning objectives:

Knowledge of various portfolio management techniques in the financial industry.

Content:

Portfolio theory: principles of investment, Markowitz- portfolio analysis, Modigliani-Miller theorems and absence of arbitrage, efficient markets, capital asset pricing model (CAPM), multi factorial CAPM, arbitragepricing theory (APT), arbitrage and hedging, multi factorial models, equity-portfolio management, passive strategies, active investment

Asset liability: statistical portfolio analysis in stock allocation, measures of success, dynamic multi seasonal models, models in building scenarios, stochastic programming in bond and liability management, optimal investment strategies, integrated asset liability management

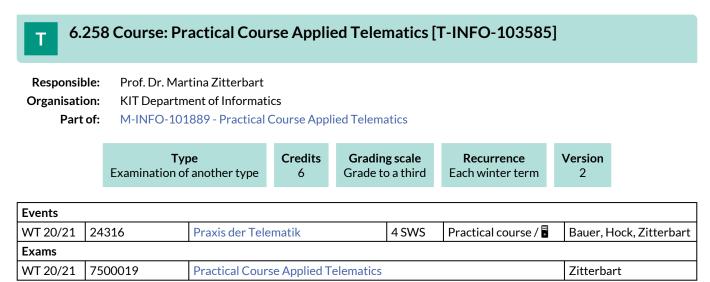
Workload:

Total workload for 4.5 CP: approx. 135 hours

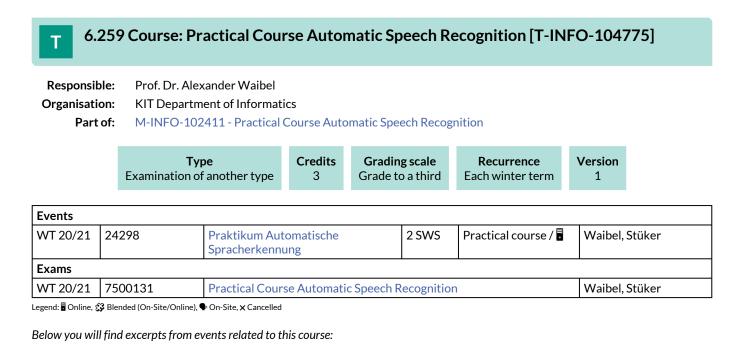
Attendance: 30 hours

Preparation and follow-up: 65 hours

Exam preparation: 40 hours


Exam preparation: 40 hours

Organizational issues


Blockveranstaltung

Literature

To be announced in the lecture

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

V

Praktikum Automatische Spracherkennung

24298, WS 20/21, 2 SWS, Language: German, Open in study portal

Practical course (P) Online

Content

- In a number of experiments different systems for automatic speech recognition will be built step-by-step
- The use of different tools and techniques from the area will be practiced

Literature

Weiterführende Literatur

- A. Waibel, K.F. Lee: Readings in Speech Recognition
- F. Jelinek: Statistical Methods of Speech Recognition
- Schukat-Talamazzini: Automatische Spracherkennung

6.260 Course: Practical Course Circuit Design with Intel Galileo [T-INFO-105580]

Responsible:	Prof. Dr. Mehdi Baradaran Tahoori
Organisation:	KIT Department of Informatics
Part of:	M-INFO-102353 - Practical Course Circuit Design with Intel Galileo

Events						
WT 20/21	2400116	Circuit Design with Intel Galileo	4 SWS Practical course / 🗣		Tahoori	
ST 2021	2400092	Circuit Design with Intel Galileo	4 SWS	Practical course / 🕃	Tahoori	
Exams						
WT 20/21	7500148	Practical Course Circuit Design with	Tahoori			
ST 2021	7500103	Practical Course Circuit Design with	Tahoori			

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Circuit Design with Intel Galileo

2400116, WS 20/21, 4 SWS, Language: German/English, Open in study portal

Practical course (P) On-Site

Content

This lab emphasizes on the design process for digital computing systems. In the beginning, an introduction in the digital design flow and testing of digital circuits is given.

Afterwards, the students will learn to design and test their own digital circuits. Therefore, the students will use Intel's Galileo, an Arduino-certified development board available for everybody based on the well-known Intel x86 architecture. At the end, the student will be able to build circuits as complex as full-adders, connect them to Intel Galileo and test them using standard Linux commands.

Students will learn to design and test their own digital circuits.

Organizational issues

As a full week block from 19.04.2021 - 23.04.2021. There are limited slots and the registration is handled in a first-come, first-served manner. So make sure you sign-up as early as possible. We can only consider registrations with the correct documents or from the online system (https://campus.studium.kit.edu/exams/index.php)

Circuit Design with Intel Galileo

2400092, SS 2021, 4 SWS, Language: English, Open in study portal

Practical course (P) Blended (On-Site/Online)

Content

This lab emphasizes on the design process for digital computing systems. In the beginning, an introduction in the digital design flow and testing of digital circuits is given. Afterwards, the students will learn to design and test their own digital circuits. Therefore, the students will use Intel's Galileo, an Arduino-certified development board available for everybody based on the wellknown Intel x86 architecture. At the end, the student will be able to build circuits as complex as full-adders, connect them to Intel Galileo and test them using standard Linux commands.

Students will learn to design and test their own digital circuits.

Organizational issues

As a full week block after the end of the lectures. Since the number of seats is limited, a registration for this laboratory in the campussystem is necessary.

6.261 Course: Practical Course Computer Vision for Human-Computer Interaction [T-INFO-105943]

Responsible: Prof. Dr.-Ing. Rainer Stiefelhagen **Organisation: KIT** Department of Informatics Part of: M-INFO-102966 - Practical Course Computer Vision for Human-Computer Interaction Credits Grading scale Recurrence Version Туре Examination of another type 6 Grade to a third Each summer term 3

Exams			
WT 20/21	7500136	Practical Course Computer Vision for Human-Computer Interaction	Stiefelhagen

Responsible: Organisation: Part of: Prof. Dr. Achim Streit

KIT Department of Informatics

M-INFO-103050 - Practical Course Data Management and Data Analysis

			Type of another type	Credits 4		ling scale e to a third		ecurrence Each term	Ve	rsion 1	
Events											
WT 20/21	2400	043	Data managemer	it and data ar	nalysis	2 SWS				, Schlitter, Ild, Sundermann	
ST 2021	2400	068	Advanced Topics Performance Cor Management and	nputing, Dat	а	3 SWS	Prac	tical course	/ 🖥	Streit	, Schlitter
Exams		•									

WT 20/21 7500269 Practical Course Data management and data analysis Streit

Legend: Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

T 6.263 Course: Practical Course Decentralized Systems and Network Services [T-INFO-106063]

Responsible: Organisation: Part of:

Prof. Dr. Hannes Hartenstein KIT Department of Informatics

f: M-INFO-103047 - Practical Course Decentralized Systems and Network Services

6.264 Course: Practical Course Digital Design & Test Automation Flow [T-INFO-105565]

Responsible:Prof. Dr. Mehdi Baradaran TahooriOrganisation:KIT Department of InformaticsPart of:M-INFO-102570 - Practical Course: Digital Design & Test Automation Flow

Type
Examination of another typeCredits
3Grading scale
Grade to a thirdRecurrence
Each winter termVersion
1

Events						
24318	Digital Design & Test Automation Flow	ion 4 SWS Practical course /		Tahoori		
7500084	Practical Course Digital Design & Te	Practical Course Digital Design & Test Automation Flow				
7500089	Practical Course Digital Design & Te	Practical Course Digital Design & Test Automation Flow				
	7500084	7500084 Practical Course Digital Design & Te	Flow 7500084 Practical Course Digital Design & Test Automa	Flow 7500084 Practical Course Digital Design & Test Automation Flow		

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Digital Design & Test Automation Flow

24318, WS 20/21, 4 SWS, Language: German/English, Open in study portal

Practical course (P) On-Site

Content

Electronic Design Automation (EDA) is used to develop nearly all novel electronic systems that we use in our daily lives, such as smartphones or laptops. In order to manage the high complexity of these systems, all steps in the design and verification phases are done automatically with the help of EDA tools.

The objective of this lab is to have a hands-on practice on major steps in digital design and test automation flow, from system-level specification to physical design and verification, using industrial EDA toolsets which are predominantly used in the industry and academia. The students will work on some sample designs and go through all major design and test steps, one by one, in different sessions of the lab. So, by the end of this lab, they become familiar with the steps and tool chain in the digital design and test automation flow. The topics include system-level specification and simulation; high-level synthesis; logic-level synthesis and simulation; design for testability; test pattern generation and fault simulation; physical design and verification; timing analysis and closure; area, delay, and power estimation and analysis.

Organizational issues

As a full week block from 05.04.2021- 09.04.2021. There are limited slots and the registration is handled in a first-come, first-served manner. So make sure you sign-up as early as possible. We can only consider registrations with the correct documents or from the online system (https://campus.studium.kit.edu/exams/index.php)

6.265 Course: Practical Course Engineering Approaches to Software Development [T-INFO-108791]

Responsible: Organisation: Part of:

Prof. Dr. Ralf Reussner

ation: KIT Department of Informatics

M-INFO-104254 - Practical: Course Engineering Approaches to Software Development

Туре	Credits	Grading scale	Recurrence	Version
Examination of another type	6	Grade to a third	Each term	1

Events					
WT 20/21	2400093	Practical Course Engineering Approaches to Software Development	4 SWS	Practical course /	Reussner
Exams					
WT 20/21	7500234	Practical Course Engineering App	Practical Course Engineering Approaches to Software Development Reussner		
ST 2021	7500184	Practical Course Engineering App	Practical Course Engineering Approaches to Software Development Burger, Reussner		

6.266 Course: Practical Course FPGA Programming [T-INFO-105576] **Responsible:** Prof. Dr. Mehdi Baradaran Tahoori **Organisation: KIT** Department of Informatics Part of: M-INFO-102661 - Practical Course FPGA Programming Туре Credits **Grading scale** Recurrence Version Examination of another type 3 Grade to a third Each term 1 **Events** WT 20/21 2400106 4 SWS Practical course / 🗣 Tahoori **FPGA Programming** ST 2021 Practical course / 🕄 2400106 4 SWS Tahoori **FPGA** Programming Exams WT 20/21 7500083 Tahoori

WT 20/217500083Practical Course FPGA ProgrammingTahooriST 20217500087Practical Course FPGA ProgrammingTahoori

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

FPGA Programming

2400106, WS 20/21, 4 SWS, Language: German/English, Open in study portal

Practical course (P) On-Site

Content

This lab emphasizes on the practical aspects of Field Programmable Gate Arrays (FPGAs). In the beginning, a short background discussion of FPGAs is given, followed by a tutorial on the workflow of configuring and programming an FPGA. This lab includes FPGA design using schematic layouts as well as several example of VHDL/Verilog programming to implement some sample digital circuits. Students will be exposed to the processes used to design and simulate FPGAs as well as compile their design and see it run on an actual FPGA. The lab is designed around the DE2-115 prototyping board, which provides a programmer, program memory, and array of switches, buttons, LEDs, an LCD, and several I/O ports.

Organizational issues

As a full week block from 12.04.2021 - 16.04.2021. There are limited slots and the registration is handled in a first-come, first-served manner. So make sure you sign-up as early as possible. We can only consider registrations with the correct documents or from the online system (https://campus.studium.kit.edu/exams/index.php)

FPGA Programming

2400106, SS 2021, 4 SWS, Language: English, Open in study portal

Practical course (P) Blended (On-Site/Online)

Content

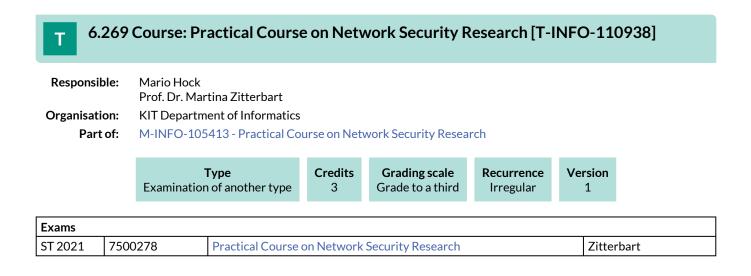
This lab emphasizes on the practical aspects of Field Programmable Gate Arrays (FPGAs). In the beginning, a short background discussion of FPGAs is given, followed by a tutorial on the workflow of configuring and programming an FPGA. This lab includes FPGA design using schematic layouts as well as several example of VHDL/Verilog programming to implement some sample digital circuits. Students will be exposed to the processes used to design and simulate FPGAs as well as compile their design and see it run on an actual FPGA. The lab is designed around the DE2-115 prototyping board, which provides a programmer, program memory, and array of switches, buttons, LEDs, an LCD, and several I/O ports.

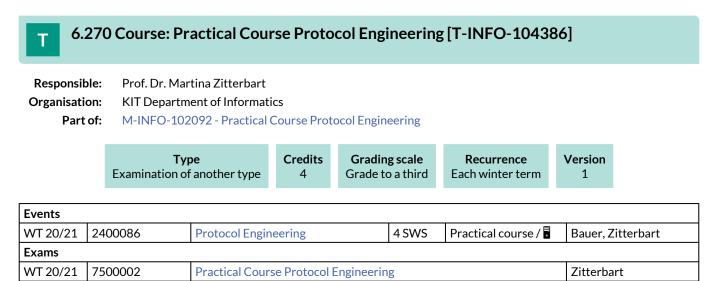
Organizational issues

As a full week block after the end of the lectures. Since the number of seats is limited, a registration for this laboratory in the campussystem is necessary.

T 6.267 Course: Practical Course Model-Driven Software Development [T-INFO-103029]

 Responsible:
 Prof. Dr. Ralf Reussner


 Organisation:
 KIT Department of Informatics


 Part of:
 M-INFO-101579 - Practical Course Model-Driven Software Development

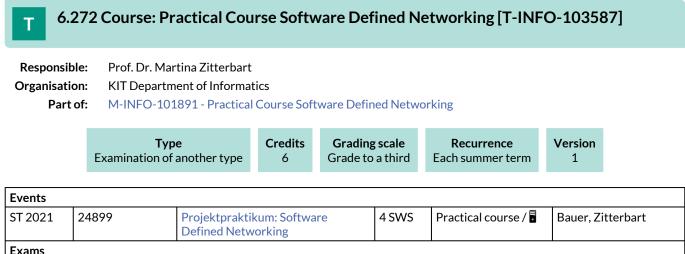
Type
Examination of another typeCredits
6Grading scale
Grade to a thirdRecurrence
Each winter termVersion
1

Events					
ST 2021	2400091	Practical Course Model-Driven Software Development	4 SWS	Practical course / 🖥	Burger
Exams	Exams				
ST 2021	7500017	Practical Course Model-Driven Software Development Reussner		Reussner	
		•			•

Part of:

6.271 Course: Practical Course Research Project: Hands-on Anthropomatics [T-INFO-105278]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck

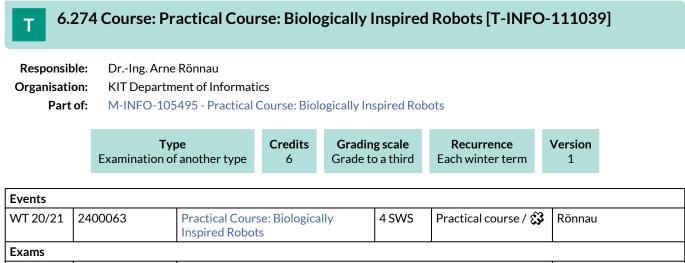

Organisation: KIT Department of Informatics

M-INFO-102568 - Practical Course Research Project: Hands-on Anthropomatics

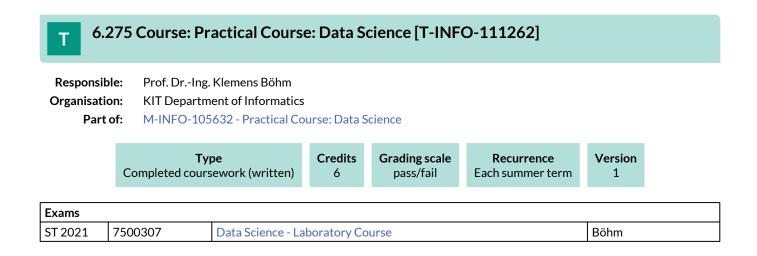
Туре	Credits	Grading scale	Recurrence	Version
Examination of another type	8	Grade to a third	Each term	1

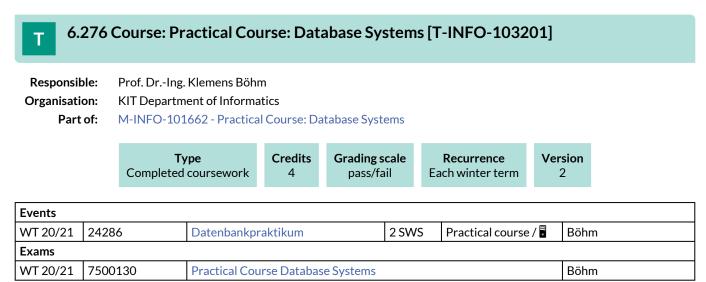
Events					
WT 20/21	24281	Laboratory Research Project: Hands-on Anthropomatics	4 SWS	Practical course / 🕃	Hanebeck, Fennel
ST 2021	24871	Research Project: Hands-on Anthropomatics	4 SWS	Practical course /	Hanebeck, Fennel
Exams					
WT 20/21	7500103	Laboratory: Research Project "Hands-on Anthropomatics" Hanebeck			
ST 2021	7500050	aboratory: Research Project "Hands-on Anthropomatics" Hanebeck, Noack			

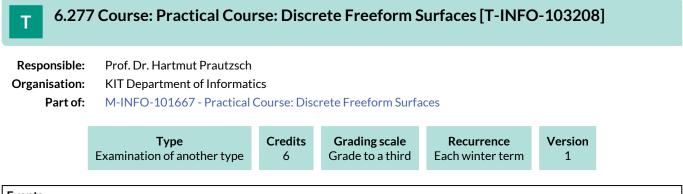
Legend: \blacksquare Online, \clubsuit Blended (On-Site/Online), \clubsuit On-Site, imes Cancelled



Exams				
ST 2021	7500167	Practical Course: Software Defined Networking	Zitterbart	
Lezend: Online. SB Blended (On-Site/Online). On-Site. x Cancelled				






Rönnau

 WT 20/21
 7500284
 Practical Course: Biologically Inspired Robots

Events					
WT 20/21	2400059	Praktikum		Practical course /	Prautzsch, Xu
ST 2021	24876	Praktikum Diskrete Freiformflächen	4 SWS	Practical course / 🖥	Prautzsch, Xu
Exams					
WT 20/21	7500151	Practical Course: Discrete Fr	Practical Course: Discrete Freeform Surfaces		Prautzsch

6.278 Course: Practical Course: General-Purpose Computation on Graphics Processing Units [T-INFO-109914]

Organisation: KIT Department of Informatics

Part of: M-INFO-100724 - Practical Course: General-Purpose Computation on Graphics Processing Units

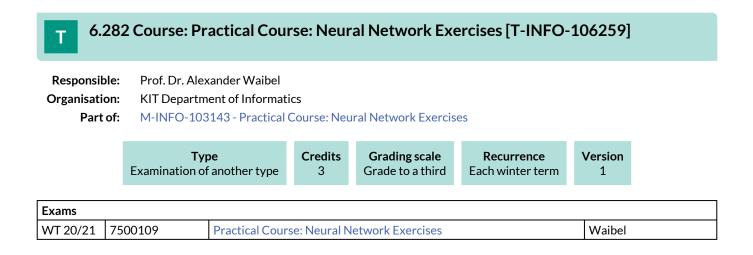
Туре	Credits	Grading scale	Recurrence	Version
Examination of another type	3	Grade to a third	Each term	1

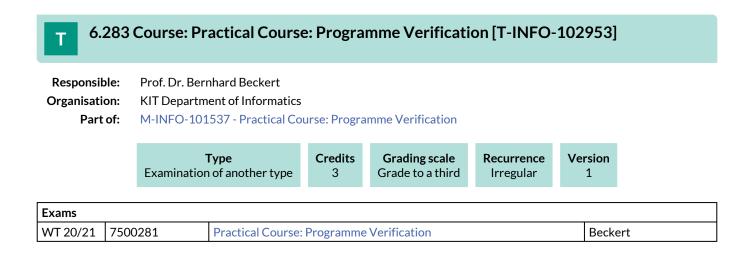
Events					
WT 20/21	24297	Praktikum General-Purpose Computation on Graphics Processing Units	2 SWS	Practical course /	Tessari, Zeidan, Herveau, Dittebrandt, Dachsbacher
ST 2021	24911	Praktikum General-Purpose Computation on Graphics Processing Units	2 SWS	Practical course /	Herveau, Dittebrandt, Dachsbacher
Exams					
WT 20/21	7500470	Practical Course: General-Purpo Processing Units	Practical Course: General-Purpose Computation on Graphics Dachsbacher Processing Units		Dachsbacher

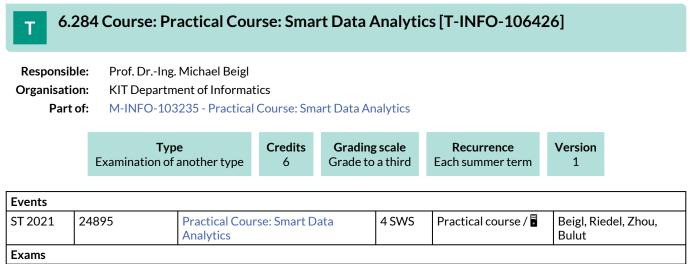
6.279 Course: Practical Course: Geometric Modeling [T-INFO-103207] Т **Responsible:** Prof. Dr. Hartmut Prautzsch Organisation: **KIT** Department of Informatics Part of: M-INFO-101666 - Practical Course: Geometric Modeling Credits Version Type Grading scale Recurrence Examination of another type 3 Grade to a third Each winter term 1 **Events** Practical course / WT 20/21 2400024 Praktikum Xu, Prautzsch Practical course / ST 2021 Prautzsch, Xu 2400026 Praktikum 2 SWS Unterteilungsalgorithmen ST 2021 2 SWS Practical course / 2400107 Praktikum Geometrisches Xu, Prautzsch Modellieren Exams 7500268 WT 20/21 Practical course: Geometric Modeling Prautzsch

6.280 Course: Practical Course: Hot Research Topics in Computer Graphics [T-INFO-109577]

Responsible:Prof. Dr.-Ing. Carsten DachsbacherOrganisation:KIT Department of InformaticsPart of:M-INFO-104699 - Practical Course: Hot Research Topics in Computer Graphics

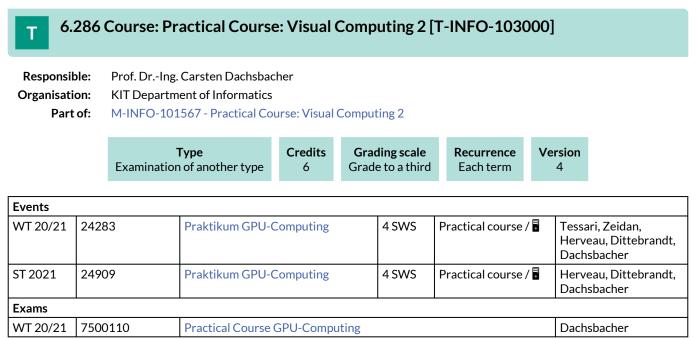

6.281 Course: Practical Course: Implementation and Evaluation of Advanced Data Mining Approaches for Semi-Structured Data [T-INFO-106219]


Responsible: Prof. Dr.-Ing. Klemens Böhm


Organisation: Part of: KIT Department of Informatics

M-INFO-103128 - Practical Course: Implementation and Evaluation of Advanced Data Mining Approaches for Semi-Structured Data

 ST 2021
 7500082
 Practical Course: Smart Data Analytics
 Beigl, Riedel


6.285 Course: Practical Course: Virtual Neurorobotics in the Human Brain Project [T-INFO-106417]

Responsible:Prof. Dr.-Ing. Rüdiger DillmannOrganisation:KIT Department of InformaticsPart of:M-INFO-103227 - Practical Course: Virtual Neurorobotics in the Human Brain Project

Recommendation

Previous visit of the lectures Machine Learning or Cognitive Systems is helpful but not mandatory.

6.287 Course: Practical Course: Web Applications and Service-Oriented Architectures (II) [T-INFO-103121]

Responsible: Prof. Dr. Sebastian Abeck

Organisation: KIT Department of Informatics

Part of: M-INFO-101635 - Practical Course: Web Applications and Service-Oriented Architectures (II)

Type	Credits	Grading scale	Recurrence	Version
Examination of another type	5	Grade to a third	Each summer term	3

Events					
ST 2021	24873	Practical Course: Web Applications and Service-Oriented Architectures (II)	2 SWS	Practical course /	Abeck, Schneider
Exams					
ST 2021	7500139	Practical Course: Web Applications a Architectures (II)	Practical Course: Web Applications and Service-Oriented Abeck Architectures (II)		

6.288 Course: Practical Introduction to Hardware Security [T-INFO-108920]

Responsible:	Prof. Dr. Mehdi Baradaran Tahoori
Organisation:	KIT Department of Informatics
Part of:	M-INFO-104357 - Practical Introduction to Hardware Security

	Examinatio	Type on of another type	Credits 6	Gradin Grade to	g scale o a third	Recurrence Each winter term	Version 1
Events							
WT 20/21	2400033	Practical Intro Security	duction in Ha	ardware	4 SWS	Lecture / Practice (/	/ Tahoori
ST 2021	2400009	Practical Intro Security	duction in Ha	ardware	4 SWS	Lecture / Practice (,	/ Tahoori
Exams	•	•				-	

Practical Introduction to Hardware Security

Practical Introduction to Hardware Security

Legend: Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

7500226

7500224

Below you will find excerpts from events related to this course:

Practical Introduction in Hardware Security

2400033, WS 20/21, 4 SWS, Language: English, Open in study portal

Lecture / Practice (VÜ) Blended (On-Site/Online)

Tahoori

Tahoori

Content

WT 20/21

ST 2021

4 SWS / 6 ECTS = 180h

Security is a major concern for a variety of domains like embedded and cyber-physical systems in which threats in hardware and software components may pose catastrophic consequences. Software security has been studied extensively, since the majority of security attacks were typically at the software level. However, currently hardware becomes the Achilles heel for on-chip system security as recent events show. There is evidence of hardware security breaches and hence, there is a growing emphasize in hardware security from academic, industry, and government sectors. In this regard, physical attacks, side-channel analysis and fault-injection attacks for security-enabled application domains is becoming a real-world challenge.

1. Hardware security primitives (PUF, TRNG)

- 2. Hardware Implementation of encryption modules (AES)
- 3. Passive Attack with side channel (on AES)
- 4. Active fault attack (on simple circuits, if feasible also on AES)

Requirement: Digital Logic Design (Lecture Technische Informatik)

The goal of this course, which is a combination of lectures and lab assignments, is to have a hands-on experience on basic concepts and new developments in hardware security, by combining both theory and practice in a coherent course. The theoretical concepts for each topic will be presented to the students in form of lectures, followed by a set of lab assignments on both hardware and software platforms to be performed by the students for each topic.

Organizational issues

ab 05.11.2020 1x wöchentlich Donnerstag: Vorlesung von 14:00-15:30, im Anschluß Übung von 15:30-17:00 Technologiefabrik, Geb. 07.21, Raum A.1.8

There are limited slots and the registration is handled in a first-come, first-served manner. So make sure you sign-up as early as possible. We can only consider registrations with the correct documents or from the online system (https:// campus.studium.kit.edu/exams/index.php)

Practical Introduction in Hardware Security 2400009, SS 2021, 4 SWS, Language: English, Open in study portal Lecture / Practice (VÜ) Online

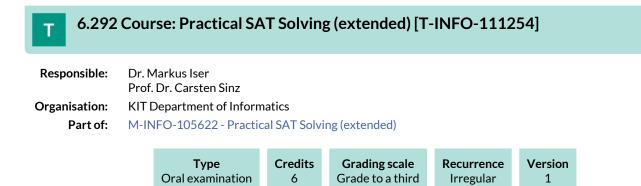
Content

4 SWS / 6 ECTS = 180h

- 1. Hardware security primitives (PUF, TRNG)
- 2. Hardware Implementation of encryption modules (AES)
- 3. Passive Attack with side channel (on AES)

4. Active fault attack (on simple circuits, if feasible also on AES)

Security is a major concern for a variety of domains like embedded and cyber-physical systems in which threats in hardware and software components may pose catastrophic consequences. Software security has been studied extensively, since the majority of security attacks were typically at the software level. However, currently hardware becomes the Achilles heel for on-chip system security as recent events show. There is evidence of hardware security breaches and hence, there is a growing emphasize in hardware security from academic, industry, and government sectors. In this regard, physical attacks, side-channel analysis and fault-injection attacks for security-enabled application domains is becoming a real-world challenge.


Organizational issues

ab 14.04.2021 1x wöchentlich Mittwoch: Vorlesung von 14:00-15:30, im Anschluß Übung von 15:30-17:00

6.289 Course: Practical Project Robotics and Automation I (Software) [T-Т INFO-104545] **Responsible:** Prof. Dr.-Ing. Björn Hein Prof. Dr.-Ing. Thomas Längle **Organisation: KIT Department of Informatics** Part of: M-INFO-102224 - Practical Project Robotics and Automation I (Software) **Grading scale** Type Credits Recurrence Version Examination of another type 6 Grade to a third Each term 1 **Events** WT 20/21 Practical course / 24282 Project practical Robotics and 4 SWS Hein, Längle Automation I (Software) Exams WT 20/21 750003 Project practical Robotics and Automation I (Software) Hein, Längle ST 2021 750003 Project practical Robotics and Automation I (Software) Hein, Längle

6.290 Course: Practical Project Robotics and Automation II (Hardware) [T-Т INFO-104552] **Responsible:** Prof. Dr.-Ing. Björn Hein Prof. Dr.-Ing. Thomas Längle **Organisation: KIT Department of Informatics** Part of: M-INFO-102230 - Practical Project Robotics and Automation II (Hardware) **Grading scale** Type Credits Recurrence Version Examination of another type 6 Grade to a third Each term 1 **Events** WT 20/21 Practical course / 24290 **Robotics and Automation II** 4 SWS Hein, Längle (Hardware) Exams WT 20/21 750004 Project practical Robotics and Automation II (Hardware) Hein, Längle ST 2021 750004 Project practical Robotics and Automation II (Hardware) Hein, Längle

6.291 Course: Practical SAT Solving [T-INFO-105798] Т **Responsible:** Prof. Dr. Carsten Sinz Organisation: KIT Department of Informatics M-INFO-102825 - Practical SAT Solving Part of: Credits Version Grading scale Recurrence Туре Grade to a third Oral examination 5 Irregular 2 Events Lecture / Practice (/ ST 2021 2400005 **Practical SAT Solving** 3 SWS Sinz, Iser

6.293 Course: Practical Seminar Digital Service Systems [T-WIWI-106563] Prof. Dr. Alexander Mädche **Responsible:** Prof. Dr. Gerhard Satzger KIT Department of Economics and Management Organisation: Part of: M-WIWI-102808 - Digital Service Systems in Industry Credits **Grading scale** Recurrence Version Туре Examination of another type 4,5 Grade to a third Irregular 1 **Events** WT 20/21 2540554 3 SWS Lecture / Mädche Practical Seminar: Information Systems & Service Design Lecture / ST 2021 2540554 **Practical Seminar: Information** 3 SWS Mädche

		Systems & Service Design (Master)				
Exams						
WT 20/21	00030	Practical Seminar Digital Service Systems		Mädche		
Legend: Online, 😳 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled						

Competence Certificate

The assessment consists of a seminar paper, a presentation of the results and the contribution to the discussion (according to \$4(2), 3 of the examination regulation). The final grade is based on the evaluation of each component (seminar paper, oral presentation, and active participation).

Prerequisites

None

Recommendation

None

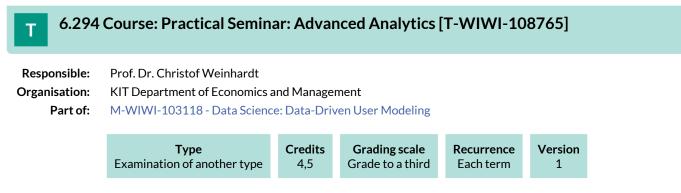
Annotation

New course title starting summer term 2017: "Practical Seminar Digital Service Systems". The current range of seminar topics is announced on the KSRI website www.ksri.kit.edu.

Below you will find excerpts from events related to this course:

V	Practical Seminar: Information Systems & Service Design 2540554, WS 20/21, 3 SWS, Language: English, Open in study portal	Lecture (V) Online
V	Practical Seminar: Information Systems & Service Design (Master) 2540554, SS 2021, 3 SWS, Open in study portal	Lecture (V) Online

Content


In this practical seminar, students get an individual assignment and develop a running software prototype. Beside the software prototype, the students also deliver a written documentation.

Prerequisites

Profound skills in software development are required

Literature

Further literature will be made available in the seminar.

Competence Certificate

The assessment consists of practical work in the field of advanced analytics, a seminar paper, a presentation of the results and the contribution to the discussion (according to \$4(2), 3 of the examination regulation). The final grade is based on the evaluation of each component (seminar paper, oral presentation, and active participation).

Prerequisites

None

Recommendation

At least one module offered by the institute should have been chosen before attending this seminar.

Annotation

The course is held in English. The course is not offered regularly.

6.295 Course: Practical Seminar: Data-Driven Information Systems [T-WIWI-106207]							
Responsible:	Prof. Dr. Alexander Mädche Prof. Dr. Gerhard Satzger Prof.Dr. Thomas Setzer Prof. Dr. Christof Weinhardt						
Organisation:	KIT Department of Economics and Management						
Part of:	M-WIWI-103117 - Data Science: Data-Driven Information Systems						
	Type Examination of another type	Credits 4.5	Grading scale Grade to a third	Recurrence Irregular	Version 1		

Events						
WT 20/21	2540554	Practical Seminar: Information Systems & Service Design	3 SWS	Lecture /	Mädche	
Exams	•		·	·	·	
WT 20/21	7900363	Practical Seminar: Information Sys	actical Seminar: Information Systems and Service Design Mädche			

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a seminar paper, a presentation of the results and the contribution to the discussion (according to §4(2), 3 of the examination regulation). The final grade is based on the evaluation of each component (seminar paper, oral presentation, and active participation).

Prerequisites

None

Recommendation

At least one module offered by the institute should have been chosen before attending this seminar.

Annotation

The course is held in english. The course is not offered regularly.

Below you will find excerpts from events related to this course:

6.296 Course: Practical Seminar: Health Care Management (with Case Studies) [T-Т WIWI-102716]

Responsible: Prof. Dr. Stefan Nickel

Organisation: KIT Department of Economics and Management Part of:

M-WIWI-102805 - Service Operations

Events							
2550498	Practical seminar: Health Care Management	3 SWS	Practical course /	Nickel, Mitarbeiter			
Exams							
21 7900105 Practical Seminar: Health Care Management (with Case Studies) Nickel							
7900014	Practical Seminar: Health Care Ma	Practical Seminar: Health Care Management (with Case Studies) Nickel					
	7900105	7900105 Practical Seminar: Health Care Ma	Management 7900105 Practical Seminar: Health Care Management (Note: Care Managem	Management 7900105 Practical Seminar: Health Care Management (with Case Studies)			

Legend: Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Due to a research semester of Professor Nickel in WS 19/20, the courses Location Planning and Strategic SCM and Practice Seminar: Health Care Management do NOT take place in WS 19/20. Please also refer to the information at https://dol.ior.kit.edu/ Lehrveranstaltungen.php for further details.

The assessment consists in a case study, the writing of a corresponding paper, and an oral exam (according to §4(2), 2 of the examination regulation).

Prerequisites

None.

Recommendation

Basic knowledge as conveyed in the module Introduction toOperations Research is assumed.

Annotation

The credits have been reduced to 4,5 starting summer term 2016.

The lecture is offered every term.

The planned lectures and courses for the next three years are announced online.

T 6.297 Course: Practical Seminar: Information Systems and Service Design [T-WIWI-108437]

Responsible: Prof. Dr. Alexander Mädche

Organisation:KIT Department of Economics and ManagementPart of:M-WIWI-102806 - Service Innovation, Design & Engineering
M-WIWI-104068 - Information Systems in Organizations
M-WIWI-104080 - Designing Interactive Information Systems

Туре	Credits	Grading scale	Recurrence	Version
Examination of another type	4,5	Grade to a third	Each term	2

Events						
WT 20/21	2540554	Practical Seminar: Information Systems & Service Design	3 SWS	Lecture / 🖥	Mädche	
ST 2021	2540554	Practical Seminar: Information Systems & Service Design (Master)	3 SWS	Lecture / 🖥	Mädche	
Exams						
WT 20/21	7900363	Practical Seminar: Information Systems and Service Design Mädche				
ST 2021	7900262	Practical Seminar: Information Systems and Service Design / Seminarpraktikum: Information Systems und Service DesignMädche				
ST 2021	7900265	Interactive Analytics Seminar Mädche				

Legend: Doline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class. Please take into account that, beside the written documentation, also a practical component (e.g. implementation of a prototype) is part of the course. Please examine the course description for the particular tasks. The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class). In the winter terms, the course is only offered as a seminar.

Prerequisites

None.

Recommendation

Attending the course "Digital Service Design" is recommended, but not mandatory.

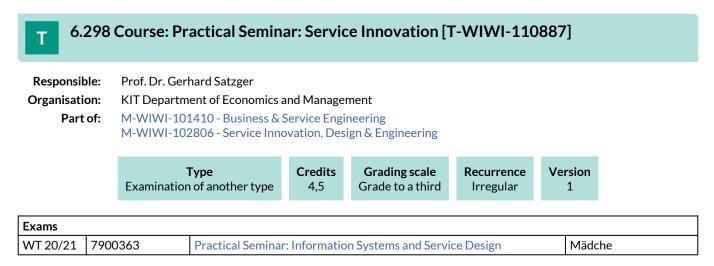
Annotation

The course is held in English.

Below you will find excerpts from events related to this course:

V	Practical Seminar: Information Systems & Service Design 2540554, WS 20/21, 3 SWS, Language: English, Open in study portal	Lecture (V) Online
V	Practical Seminar: Information Systems & Service Design (Master) 2540554, SS 2021, 3 SWS, Open in study portal	Lecture (V) Online

Content


In this practical seminar, students get an individual assignment and develop a running software prototype. Beside the software prototype, the students also deliver a written documentation.

Prerequisites

Profound skills in software development are required

Literature

Further literature will be made available in the seminar.

Competence Certificate

The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class.

Please take into account that, beside the written documentation, also a practical component (such as a survey or an implementation of an application) is part of the course. Please examine the course description for the particular tasks.

The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class).

Prerequisites

None

Recommendation

Knowledge of Service Innovation Methods is assumed. Therefore it is recommended to attend the course Service Innovation [2540468] beforehand.

Annotation

Due to the project work, the number of participants is limited and participation requires knowledge about models, concepts and approaches that are taught in the Service Innovation lecture. Having taken the Service Innovation lecture or demonstrating equivalent knowledge is a prerequisite for participating in this Practical Seminar. Details for registration will be announced on the web pages for this course.

The seminar is not offered regularly.

Responsible:Prof. Dr.-Ing. Carsten DachsbacherOrganisation:KIT Department of InformaticsPart of:M-INFO-105384 - Praktikum: Graphics and Game Development

	Examinatic	Type on of another type	Credits 6		ling scale e to a third		c urrence regular	Ve	rsion 1
Events									
WT 20/21	24287	Praktikum Graphics and Game Development		4 SWS	Practi	cal course /	/ 🖥	Zeidan, Tessari, Herveau, Dittebrandt, Dachsbacher	
ST 2021	24912	Praktikum Graphics and Game Development		4 SWS	Practi	cal course /	/	Herveau, Dittebrandt, Dachsbacher	
Exams									
WT 20/21	7500105	Praktikum: Graph	Praktikum: Graphics and Game Development			Dachsbacher			

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Recommendation

Knowledge of basics or algorithms of computer graphics are recommended.

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites

None

Annotation

The course is given every second fall term, e.g., WS2017/18, WS2019/20, ...

The retake exam is given in the summer term subsequent to the fall term where the course (lecture and final exam) is given.

6.301 Course: Predictive Modeling [T-WIWI-110868]

Responsible:	JunProf. Dr. Fabian Krüger
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101638 - Econometrics and Statistics I
	M-WIWI-101639 - Econometrics and Statistics II

Туре	Credits	Grading scale	Recurrence	Version	
Examination of another type	4,5	Grade to a third	Each summer term	1	

Events					
ST 2021	2521311	Predictive Modeling	2 SWS	Lecture / 🖥	Krüger
ST 2021	2521312	Predictive Modeling (Tutorial)	2 SWS	Practice / 🖥	Krüger, Koster

Legend: 🖥 Online, 🔀 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Open Book exam, online

Prerequisites

None

Below you will find excerpts from events related to this course:

Predictive Modeling

2521311, SS 2021, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content Contents

This course presents methods for making and evaluating statistical predictions based on data. We consider various types of predictions (mean, probability, quantile, and full distribution), all of which are practically relevant. In each case, we discuss selected modeling approaches and their implementation using R software. We consider various economic case studies. Furthermore, we present methods for absolute evaluation (assessing whether a given model is compatible with the data) and relative evaluation (comparing the predictive performance of alternative models).

Learning objectives

Students have a good conceptual understanding of statistical prediction methods. They are able to implement these methods using statistical software, and can assess which method is suitable in a given situation.

Prerequisites

Students should know econometrics on the level of the course `Applied Econometrics' [2520020]

Literature

- Elliott, G., und A. Timmermann (Hrsg.): "Handbook of Economic Forecasting", vol. 2A und 2B, 2013.
- Gneiting, T., und M. Katzfuss: "Probabilistic Forecasting", Annual Review of Statistics and Its Application 1, 125-151, 2014.
- Hastie, T., Tibshirani, R., and J. Friedman: "The Elements of Statistical Learning", 2. Ausgabe, Springer, 2009.
- Weitere Literatur wird in der Vorlesung bekanntgegeben.

Predictive Modeling (Tutorial)

2521312, SS 2021, 2 SWS, Language: English, Open in study portal

Practice (Ü) Online

6.302 Course: Price Management [T-WIWI-105946] **Responsible:** Prof. Dr. Andreas Geyer-Schulz Dr Paul Glenn Organisation: KIT Department of Economics and Management Part of: M-WIWI-101409 - Electronic Markets Credits **Grading scale** Recurrence Version Туре 4,5 Grade to a third Written examination Each summer term 1 **Events** ST 2021 2540529 2 SWS Lecture / **Price Management** Glenn ST 2021 2540530 **Exercise Price Management** 1 SWS Practice / Glenn Exams WT 20/21 7900170 Price Management (Nachklausur SS 2020) Geyer-Schulz

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Lecture and exam will not be offered in summer semester 2019. The next examination is in the summer semester 2020.

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

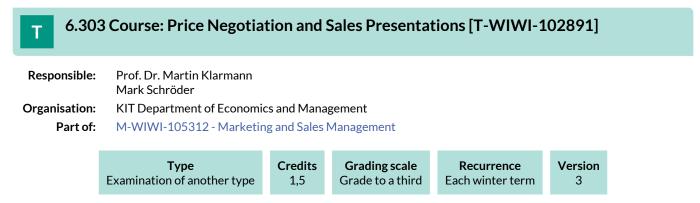
None

Recommendation None

Annotation

The lecture is offered for the first time in summer term 2016.

Below you will find excerpts from events related to this course:


Price Management

2540529, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Literature

- H. Simon and M. Fassnacht, Preismanagement, vol. 4. Wiesbaden: Springer Gabler, 2016.
- T. T. Nagle, J. E. Hogan, und J. Zalee, *The Strategy and Tactics of Pricing: A guide to growing more profitably*. New Jersey: Prentice Hall, 2010.

Competence Certificate

This alternative exam assessment consists of a presentation with a subsequent discussion totalling 25 minutes. Moreover learning contents are checked by realistic 30-minute price negotiations.

Prerequisites

None

Recommendation

None

Annotation

Please note that the workshop "Price Negotiation and Sales Presentations" as well as all other 1.5-ECTS courses will not take place in the winter tern 20/21 due to a research semester. The course will probably be offered again starting in WS21/22.

Participation requires an application. The application period starts at the beginning of the semester. More information can be obtained on the website of the research group Marketing & Sales (marketing.iism.kit.edu). Access to this course is restricted. Typically all students will be granted the attendance of one course with 1.5 ECTS. Nevertheless attendance can not be guaranteed.For further information please contact Marketing and Sales Research Group (marketing.iism.kit.edu).Please note that only one of the courses from the election block can be attended in the module.

Т 6.	304 Course:	Pricing Excell	ence [T-\	WIWI-111246]	l	
Responsil	Responsible: Fabian Bill Prof. Dr. Martin Klarmann					
Organisati	ion: KIT Depar	tment of Economi	ics and Mana	agement		
Part	t of: M-WIWI-:	105312 - Marketii	ng and Sales	Management		
		ype of another type	Credits 1,5	Grading scale Grade to a third	Recurrence Each summer term	Version 1
Events						
ST 2021	2571175	Pricing Excelle	ence	1 SWS	Others (sons /	Bill
		T THEING EXCENT				

Competence Certificate

Alternative exam assessment (team presentation of a case study with a duration of about 25 minutes and a subsequent discussion).

Prerequisites

None.

Annotation

Please note that only one of the courses in the module's supplementary offering can be counted. This event has a restriction on participation. The Marketing and Sales Research Group typically allows all students to attend a 1.5 credit course in the corresponding module. A guarantee for the attendance of a certain event cannot be given. An application is required for participation in this event. The application phase usually takes place at the beginning of the lecture period in the summer semester. More information on the application process is usually available on the Marketing and Sales Research Group website (marketing,iism.kit.edu) shortly before the start of the lecture period in the summer semester.

Below you will find excerpts from events related to this course:

Pricing Excellence

2571175, SS 2021, 1 SWS, Language: English, Open in study portal

Others (sonst.) Online

Content

In a theoretical part at the beginning of the course, students are taught the theoretical foundations of pricing. This includes an introduction to (1) price setting of product prices as well as (2) price setting of customer net prices (development of discount systems). Furthermore, theoretical foundations of price implementation and price monitoring are discussed.

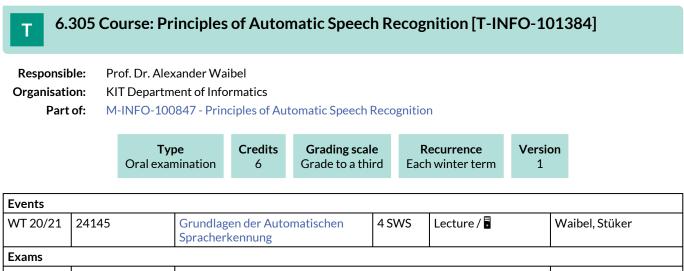
Theoretical contents are applied and presented by teams within a case study format.

The learning objectives are as follows:

- Getting to know the theoretical foundations of price setting
- Getting to know the theoretical foundations of price execution and price monitoring
- Application of the acquired knowledge in a case study format
- Concise and structured presentation of the results

Alternative exam assessment according to § 4 paragraph 2 Nr. 3 of the examination regulation (presentation of a case study with subsequent discussion).

Total time required for 1.5 credit points: approx. 45.0 hours


Attendance time: 15 hours

Preparation and wrap-up of the course: 22.5 hours

Exam and exam preparation: 7.5 hours

Organizational issues

Blockveranstaltung, Raum 115, Geb. 20.21, Termine werden noch bekannt gegeben

WT 20/21	VT 20/21 7500082 Principles of Automatic Speech Recognition		Waibel, Stüker
ST 2021	7500042	Principles of Automatic Speech Recognition	Waibel, Stüker

Legend: 🖥 Online, 🗱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Grundlagen der Automatischen Spracherkennung

24145, WS 20/21, 4 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

This class explains the layout of state-of-the-art speech recognition systems. The layout will be motivated based on the human speech production process und its properties. The class treats all processing steps of automatic speech recognition systems in detail: signal pre-processing, training of suitable, statistical models, and the actual recognition process. The focus will be on statistical methods, as they are being used in current speech recognition systems. In this way the state-of-the-art of the area of automatic speech recognition will be communicated. Further the class will introduce alternative Methods, which were the foundation of the current methods and which are still being used in special circumstances. Using sample applications und examples from current research projects, the current state-of-the-art and the performance of current systems will be illustrated.

Organizational issues

Die Vorlesung wird über Zoom gehalten werden.

Nähere Informationen dazu gibt es im ILIAS Kurs.

Zoom-Link:https://zoom.us/j/92732046306

Literature

- Xuedong Huang, Alex Acero, Hsiao-wuen Hon, Spoken Language Processing, Prentice Hall, NJ, USA, 2001
- Fredrick Jelinek (editor), Statistical Methods for Speech Recognition, The MIT Press, 1997, Cambridge, Massachusetts, London, England

Weiterführende Literatur

- Lawrence Rabiner and Ronald W. Schafer, Digital Processing of Speech Signals, Prentice Hall, 1978
- Schukat-Talamazzini, Automatische Spracherkennung

6.306 Course: Product and Innovation Management [T-WIWI-109864] Т Prof. Dr. Martin Klarmann **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-101510 - Cross-Functional Management Accounting M-WIWI-101514 - Innovation Economics M-WIWI-105312 - Marketing and Sales Management Credits **Grading scale** Recurrence Version Type Examination of another type Grade to a third Each summer term 3 2 **Events** ST 2021 2571154 Product and Innovation 2 SWS Lecture / Klarmann Management Exams ST 2021 7900024 Product and Innovation Management Klarmann

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment is carried out (according to §4(2), 3 SPO) in the form of a written open book exam. In the summer term 2021, the written open book exam will either take place in the lecture hall or online, depending on further pandemic developments.

Further details on the open book exam will be announced in the lecture.

Prerequisites

None

Annotation

For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).

Below you will find excerpts from events related to this course:

Product and Innovation Management

2571154, SS 2021, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

This course addresses topics around the management of new as well as existing products. After the foundations of product management, especially the product choice behavior of customers, students get to know in detail different steps of the innovation process. Another section regards the management of the existing product portfolio.

Students

- know the most important terms of the product and innovation concept

- understand the models of product choice behavior (e.g., the Markov model, the Luce model)

- are familiar with the basics of network theory (e.g. the Triadic Closure concept)

- know the central strategic concepts of innovation management (especially the market driving approach, pioneer and successor, Miles/Snow typology, blockbuster strategy)

- master the most important methods and sources of idea generation (e.g. open innovation, lead user method, crowdsourcing, creativity techniques, voice of the customer, innovation games, conjoint analysis, quality function deployment, online toolkits)

- are capable of defining and evaluating new product concepts and know the associated instruments like focus groups, product testing, speculative sales, test market simulation Assessor, electronic micro test market

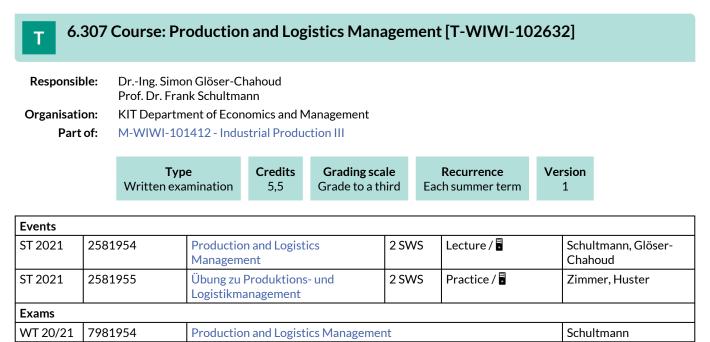
- have advanced knowledge about market introduction (e.g. adoption and diffusion models Bass, Fourt/Woodlock, Mansfield)

- understand important connections of the innovation process (cluster formation, innovation culture, teams, stage-gate process)

The assessment is carried out (according to §4(2), 3 SPO) in the form of a written open book exam.

Total effort for 3 credit points: approx. 90 hours

Presence time: 30 hours


Preparation and wrap-up of LV: 45.0 hours

Exam and exam preparation: 15.0 hours

For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).

Literature

Homburg, Christian (2016), Marketingmanagement, 6. Aufl., Wiesbaden.

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (90 minutes) (following \$4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following \$4(2), 3 of the examination regulation).

Prerequisites

None

Recommendation None

Below you will find excerpts from events related to this course:

Production and Logistics Management

2581954, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

This course covers central tasks and challenges of operative production and logistics management. Students get to know the set-up and mode of planning systems such as production planning and control systems, enterprise resource planning systems and advanced planning systems to cope with the accompanying planning tasks in supply chain management. Methods to solve these tasks from the field of operational research will be explored with respect to manufacturing program planning, material requirement planning, lot size problems and scheduling. Alongside to MRP II (Manufacturing Resources Planning), students will be introduced to integrated supply chain management approaches. Finally, commercially available planning systems will be presented and discussed.

Literature

Wird in der Veranstaltung bekannt gegeben.

Responsible:	Prof. DrIng. Johann Marius Zöllner
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-103356 - Machine Learning

Type	Credits	Grading scale	Recurrence	Version
Examination of another type	4,5	Grade to a third	Each winter term	2

Events					
WT 20/21	2512501	Practical Course Cognitive Automobiles and Robots (Master)	3 SWS	Practical course / 🖥	Zöllner
ST 2021	2513500	Cognitive Automobiles and Robots	2 SWS	Seminar / 🖥	Zöllner
Exams					
WT 20/21	7900107	Advanced Lab Cognitive Automobile and Robots (Master)			Zöllner
_	·				•

Legend: Doline, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and
- a written seminar thesis

Details of the grade formation will be announced at the beginning of the course.

Prerequisites

None

Below you will find excerpts from events related to this course:

Practical Course Cognitive Automobiles and Robots (Master)	Practical course (P)
2512501, WS 20/21, 3 SWS, Language: German/English, Open in study portal	Online

Content

The lab is intended as a practical supplement to lectures such as "Machine Learning". The theoretical basics are applied in the lab course. The aim of the lab course is that the participants work together to design, develop and evaluate a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

In addition to the scientific objectives involved in the investigation and application of the methods, aspects of project-specific teamwork in research (from specification to presentation of the results) are also developed in this practical course.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and implementation and evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:

- Students can practically apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles.
- Students master the analysis and solution of corresponding problems in a team.
- Students can evaluate, document and present their concepts and results.

Recommendations:

Attendance of the lecture machine learning, C/C++ knowledge, Python knowledge

Workload:

The workload of 4.5 credit points consists of the time spent in the lab for practical implementation of the selected solution, as well as the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Organizational issues

Anmeldung und weitere Informationen sind im Wiwi-Portal zu finden.

Registration and further information can be found in the WiWi-portal.

V	

Cognitive Automobiles and Robots 2513500, SS 2021, 2 SWS, Language: German/English, Open in study portal Seminar (S) Online

Content

The seminar is intended as a theoretical supplement to lectures such as "Machine Learning". The theoretical basics will be deepened in the seminar. The aim of the seminar is that the participants work individually to analyze a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and theoretical evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:

- Students can apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles for theoretical analysis.
- Students can evaluate, document and present their concepts and results.

Recommendations:

Attendance of the lecture machine learning

Workload:

The workload of 3 credit points consists of the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Organizational issues

Anmeldung und weitere Informationen sind im Wiwi-Portal zu finden.

Registration and further information can be found in the WiWi-portal.

6.309 Course: Project Lab Machine Learning [T-WIWI-109983] Т **Responsible:** Prof. Dr.-Ing. Johann Marius Zöllner **Organisation:** KIT Department of Economics and Management Part of: M-WIWI-103356 - Machine Learning Type Credits **Grading scale** Recurrence Version Examination of another type 4,5 Grade to a third Each summer term 2 **Events** ST 2021 2512500 Practical course / 🕄 3 SWS Zöllner **Project Lab Machine Learning** Exams ST 2021 7900086 **Project Lab Machine Learning** Zöllner

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and
- a written seminar thesis

Details of the grade formation will be announced at the beginning of the course.

Prerequisites

None

Below you will find excerpts from events related to this course:

Project Lab Machine Learning

2512500, SS 2021, 3 SWS, Language: German/English, Open in study portal	Blended (On-Site/Online)
---	--------------------------

Content

The lab is intended as a practical supplement to lectures such as "Machine Learning". The theoretical basics are applied in the lab course. The aim of the lab course is that the participants work together to design, develop and evaluate a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

In addition to the scientific objectives involved in the investigation and application of the methods, aspects of project-specific teamwork in research (from specification to presentation of the results) are also developed in this practical course.

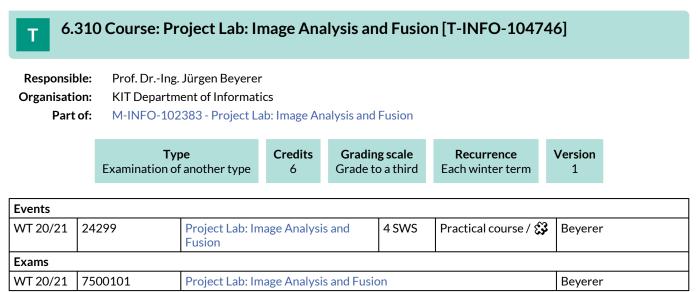
The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and implementation and evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:

- Students can practically apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles.
- Students master the analysis and solution of corresponding problems in a team.
- Students can evaluate, document and present their concepts and results.

Recommendations:

Attendance of the lecture machine learning, C/C++ knowledge, Python knowledge


Workload:

The workload of 4.5 credit points consists of the time spent in the lab for practical implementation of the selected solution, as well as the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Practical course (P)

Organizational issues

Anmeldung und weitere Informationen sind im Wiwi-Portal zu finden. Registration and further information can be found in the WiWi-portal.

Legend: 🖥 Online, 🔅 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Project Lab: Image Analysis and Fusion

24299, WS 20/21, 4 SWS, Open in study portal

Practical course (P) Blended (On-Site/Online)

Organizational issues

Die Erfolgskontrolle erfolgt durch Bewertung der Projektdokumentation sowie der Präsentation der Projektergebnisse als Erfolgskontrolle anderer Art nach § 4 Abs. 2 Nr. 3 der SPO.

Die Note setzt sich zusammen aus der Note der schriftlichen Ausarbeitung und den Präsentationen.

Literature

Empfehlungen:

Hilfreich sind:

- Kenntnisse der Grundlagen der Stochastik und Signal- und Bildverarbeitung
- Kenntnisse der Vorlesungen Einführung in die Informationsfusion [IN4INEIF], Automatische Sichtprüfung und Bildverarbeitung [IN4INASB], Mustererkennung [IN4INME], Probabilistische Planung.

6.311 Course: Project Management [T-WIWI-103134]

Responsible:
Organisation:
Part of:

Prof. Dr. Frank Schultmann KIT Department of Economics and Management M-WIWI-101412 - Industrial Production III

M-WIWI-101471 - Industrial Production II

Events							
WT 20/21	2581963	Project Management	2 SWS	Lecture /	Schultmann, Volk, Wiens, Schumacher, Rosenberg, Wehrle		
WT 20/21	2581964	Übung zu Project Management	1 SWS	Practice /	Volk, Wiens, Schumacher, Rosenberg, Wehrle, Gehring		
Exams							
WT 20/21	7981963	Project Management	Project Management				

Legend: 🖥 Online, 🚯 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes) (following \$4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (examination of another type, following \$4(2), 3 of the examination regulation).

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Project Management 2581963, WS 20/21, 2 SWS, Language: English, Open in study portal Lecture (V) Online

Content

- 1. Introduction
- 2. Principles of Project Management
- 3. Project Scope Management
- 4. Time Management and Resource Scheduling
- 5. Cost Management
- 6. Quality Management
- 7. Risk Management
- 8. Stakeholder
- 9. Communication, Negotiation and Leadership
- 10. Project Controlling
- 11. Agile Project Management

Literature

Wird in der Veranstaltung bekannt gegeben.

6.312 Course: Psychological Processes in Individual Decisions [T-WIWI-111315]

Responsible:	Prof. Dr. Benjamin Scheibehenne
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-105312 - Marketing and Sales Management

	Examinatior	Type of another t	type	Credits 4,5	Grading scale Grade to a third	Recurrence Once	Version 1	
0.50					0.001/0			

Events						
ST 2021	2500003	Psychological processes in individual decisions	2 SWS	Others (sons / 🖥	Seidler, Scheibehenne	
Legend: Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled						

Competence Certificate

The examination takes place in the form of an alternative exam assessment: The students develop their own research idea and an experimental design accompanying the seminar. This idea will be presented at the end and explained in a written paper.

30% assessment: presentation 70% assessment: written work

Prerequisites None

Recommendation

None

Annotation

The course will be offered once in the summer semester 2021.

6.313 Course: Public Management [T-WIWI-102740] Т **Responsible:** Prof. Dr. Berthold Wigger Organisation: KIT Department of Economics and Management Part of: M-WIWI-101504 - Collective Decision Making M-WIWI-101511 - Advanced Topics in Public Finance Credits **Grading scale** Recurrence Version Туре 4,5 Grade to a third Each winter term Written examination 1 **Events** WT 20/21 2561127 **Public Management** 3 SWS Lecture / Practice (/ Wigger • Exams WT 20/21 790puma Wigger **Public Management**

Legend: 🖥 Online, 🗱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Depending on the further pandemic development in the summer semester 2021 the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1.5h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites

None

Recommendation

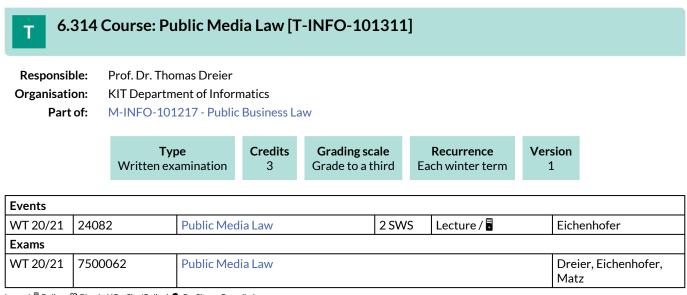
Basic knowledge of Public Finance is required.

Below you will find excerpts from events related to this course:

Public Management

2561127, WS 20/21, 3 SWS, Language: German, Open in study portal

Organizational issues


Dienstag 14:00-15:30 Uhr per Zoom-Livestream

Literature

Weiterführende Literatur:

- Damkowski, W. und C. Precht (1995): Public Management; Kohlhammer
- Richter, R. und E.G. Furubotn (2003): Neue Institutionenökonomik; 3. Auflage, Mohr
- Schedler, K. und I. Proeller (2003): New Public Management; 2. Auflage; UTB
- Mueller, D.C. (2009): Public Choice III; Cambridge University Press
- Wigger, B.U. (2006): Grundzüge der Finanzwissenschaft; 2. Auflage; Springer

Lecture / Practice (VÜ) Online

Legend: Doline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.315 Course: Public Revenues [T-WIWI-102739] **Responsible:** Prof. Dr. Berthold Wigger **Organisation:** KIT Department of Economics and Management Part of: M-WIWI-101511 - Advanced Topics in Public Finance Type Credits **Grading scale** Recurrence Version Written examination 4,5 Grade to a third Each summer term 1 **Events** ST 2021 Lecture / 2560120 **Public Revenues** 2 SWS Wigger ST 2021 Practice / 2560121 Übung zu Öffentliche Einnahmen 1 SWS Wigger Exams

 WT 20/21
 790oeff
 Public Revenues
 Wigger

 Legend: Online, 33
 Blended (On-Site/Online), Constite, x Cancelled
 Wigger

Competence Certificate

Depending on the further pandemic development in the summer semester 2021 the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites

None

Recommendation

Basic knowledge of Public Finance is required.

Below you will find excerpts from events related to this course:

Public Revenues

2560120, SS 2021, 2 SWS, Language: German, Open in study portal

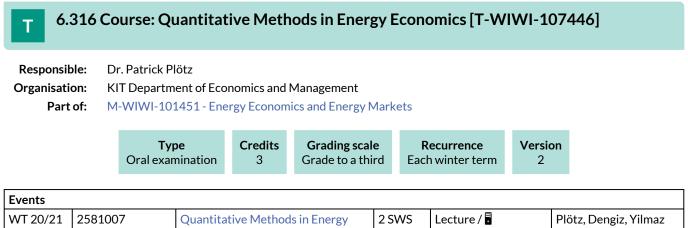
Lecture (V) Online

Content

The *Public Revenues* lecture is concerned with the theory and policy of taxation and public dept. In the first chapter, fundamental concepts of taxation theory are introduced, whereas the second chapter deals with key elements of the German taxation system. The allocative and distributive effects of different taxation types are examined in chapter three and four. Chapter five integrates both allocative and distributive components in order to derive a theory of optimal taxation. The core of the sixth chapter is represented by international aspects of taxation. The debt part begins with a description of the extent and structure of public dept in chapter seven. In the following chapter, macroeconomic theories of national dept are evolved, while chapter nine is concerned with its long term consequences when employed as a regular instrument of budgeting. Finally, the tenth chapter deals with constitutional limits to public debt-incurring.

Learning goals:

See German version.


Workload:

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Literatur:

- Homburg, S.(2000): Allgemeine Steuerlehre, Vahlen
- Rosen, H.S.(1995): Public Finance; 4. Aufl., Irwin
- Wellisch, D.(2000): Finanzwissenschaft I und Finanzwissenschaft III, Vahlen
- Wigger, B. U.(2006): Grundzüge der Finanzwissenschaft; 2. Aufl., Springer

		Economics			
WT 20/21	2581008	Übung zu Quantitative Methods in Energy Economics	1 SWS	Practice / 🖥	Dengiz, Yilmaz, Fichtner
Exams					
WT 20/21	7981007	Quantitative Methods in Energy Economics			Fichtner

Legend: 🖥 Online, 🚯 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of an oral (30 minutes) exam (following \$4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following \$4(2), 3 of the examination regulation).

Prerequisites None

Recommendation

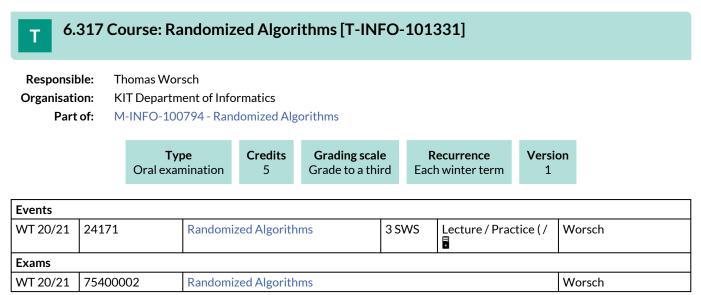
Below you will find excerpts from events related to this course:

Quantitative Methods in Energy Economics 2581007, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

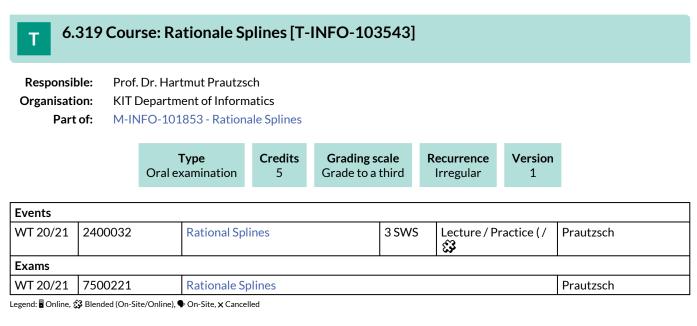
Content

Energy economics makes use of many quantitative methods in exploration and analysis of data as well as in simulations and modelling. This lecture course aims at introducing students of energy economics into the application of quantitative methods and techniques as taught in elementary courses to real problems in energy economics. The focus is mainly on regression, simulation, time series analysis and related statistical methods as applied in energy economics.


Learning Goals:

The student

- knows and understands selected quantitative methods of energy economics
- is able to use selected quantitative methods of energy economics
- understands they range of usage, limits and is autonomously able to adress new problems by them.


Literature

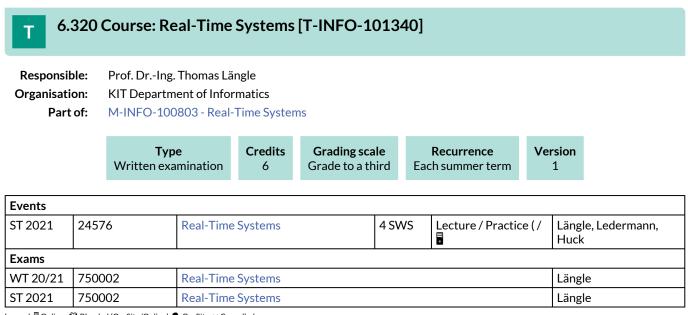
Wird in der Vorlesung bekannt gegeben.

Legend: Dolline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Rational Splines

2400032, WS 20/21, 3 SWS, Language: German, Open in study portal


Lecture / Practice (VÜ) Blended (On-Site/Online)

Content

projective spaces, quadrics, rational curves, rational Bézier- and B-spline techniques, NURBS, dual curves, dual Bézier and B-spline representation, offset curves and surfaces, parametrizing quadrics, triangular patches on quadrics, cyclides

Organizational issues

Die Vorlesung und Übung werden online angeboten werden. Präsenzstunden nur bei allgemeinem Wunsch, sofern die Umstände es zulassen.

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

1

6.321 Course: Recommender Systems [T-WIWI-102847]

Responsible: Organisation:	Prof. Dr. Andreas Geyer KIT Department of Econ		lanagement		
0	•		8		
Part of:	M-WIWI-101410 - Busin M-WIWI-104814 - Infor M-WIWI-105661 - Data	mation Syst	ems: Analytical and	· · · · · · · · · · · · · · · · · · ·	n Services
	Туре	Credits	Grading scale	Recurrence	Version

4,5

Events					
ST 2021	2540506	Recommender Systems	2 SWS	Lecture /	Geyer-Schulz
ST 2021	2540507	Exercise Recommender Systems	1 SWS	Practice / 🖥	Nazemi
Exams					
WT 20/21	7900149	Recommender Systems	Recommender Systems		

Grade to a third

Each summer term

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Written examination

Competence Certificate

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites None

Recommendation None

Below you will find excerpts from events related to this course:

Recommender Systems

2540506, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

At first, an overview of general aspects and concepts of recommender systems and its relevance for service providers and customers is given. Next, different categories of recommender systems are discussed. This includes explicit recommendations like customer reviews as well as implicit services based on behavioral data. Furthermore, the course gives a detailed view of the current research on recommender systems at the Chair of Information Services and Electronic Markets.

Learning objectives:

The student

- is proficient in different statistical, data-mining, and game theory methods of computing implicit and explicit recommendations
- evaluates recommender systems and compares these with related services

Workload:

The total workload for this course is approximately 135 hours (4.5 credits):

Time of attendance

- Attending the lecture: 15 x 90min = 22h 30m
- Attending the exercise classes: 7 x 90min = 10h 30m
- Examination: 1h 00m

Self-study

- Preparation and wrap-up of the lecture: 15 x 180min = 45h 00m
- Preparing the exercises: 25h 00m
- Preparation of the examination: 31h 00m

Sum: 135h 00m

Exam:

Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 10) from excersise work will be added.

Grade: Minimum points

- 1,0:95
- 1,3:90
- 1,7:85
- 2,0:80
- 2,3:75
- 2,7:70
- 3,0:65
- 3,3:60
- 3,7:55
- 4,0:50
- 5,0:0

Literature

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules between sets of items in large databases. In Sushil Jajodia Peter Buneman, editor, Proceedings of the ACM SIGMOD International Conference on Management of Data, volume 22, Washington, D.C., USA, Jun 1993. ACM, ACM Press.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules. In Proceedings of the 20th Very Large Databases Conference, Santiago, Chile, pages 487 – 499, Sep 1994.

Asim Ansari, Skander Essegaier, and Rajeev Kohli. Internet recommendation systems. Journal of Marketing Research, 37:363 – 375, Aug 2000.

Christopher Avery, Paul Resnick, and Richard Zweckhauser. The market for evaluations. American Economic Review, 89(3):564 – 584, 1999.

Ibrahim Cingil, Asuman Dogac, and Ayca Azgin. A Broader Approach to Personalization. Communications of the ACM, 43(8):136 – 141, Aug 2000.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley-Interscience, New York, 2 edition, 2001.

Andreas Geyer-Schulz, Michael Hahsler, and Maximilian Jahn. A customer purchase incidence model applied to recommender services. In R. Kohavi et al., editor, Proceedings of the WebKDD 2001 – Mining log data across all customer touchpoints, volume 2356 of Lecture Notes in Artificial Intelligence LNAI, pages 25–47, Berlin, 2002. ACM, Springer-Verlag.

Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. JACM, 46(5):604-632, sep 1999.

Joseph Konstan, Bradley Miller, David Maltz, Jonathan Herlocker, Lee Gordon, and John Riedl. Grouplens: Applying Collaborative Filtering to Usernet News. Communications of the ACM, 40(3):77 – 87, Mar 1997.

Paul Resnick, Neophytos Iacovou, Peter Bergstrom, and John Riedl. Grouplens: An open architecture for collaborative filtering of netnews. In Proceedings of the conference on Computer supported cooperative work, pages 175 – 186. ACM Press, 1994.

Weiterführende Literatur:

Antoinette Alexander. The return of hardware: A necessary evil? Accounting Technology, 15(8):46 - 49, Sep 1999.

Christopher Avery and Richard Zeckhauser. Recommender systems for evaluating computer messages. Communications of the ACM, 40(3):88 – 89, Mar 1997.

Steven Bellman, Gerald Lohse, and Eric Johnson. Predictors of Online Buying Behavior. Communications of the ACM, 42(12):32 – 38, Dec 1999.

Thomas J. Blischok. Every transaction tells a story. Chain Store Age Executive with Shopping Center Age, 71(3):50–56, Mar 1995.

Hans Hermann Bock. Automatische Klassifikation. Vandenhoeck und Ruprecht, Göttingen, 1974.

Andrew S.C. Ehrenberg. Repeat-Buying: Facts, Theory and Applications. Charles Griffin & Company Ltd, London, 2 edition, 1988.

Wolfgang Gaul, Andreas Geyer-Schulz, Michael Hahsler, and Lars Schmidt-Thieme. eMarketing mittels Recommendersystemen. Marketing ZFP, 24:47 – 55, 2002.

Andreas Geyer-Schulz, Michael Hahsler, and Maximilian Jahn. myvu: a next generation recommender system based on observed consumer behavior and interactive evolutionary algorithms. In W. Gaul, O. Opitz, and M. Schader, editors, Data Analysis – Scientific Modeling and Practical Applications, volume 18 of Studies in Classification, Data Analysis and Knowledge Organization, pages 447 – 457, Heidelberg, Germany, 2000. Springer.

Andreas Geyer-Schulz, Michael Hahsler, and Maximillian Jahn. Educational and scientific recommender systems: Designing the information channels of the virtual university. International Journal of Engineering Education, 17(2):153 – 163, 2001.

Mark-Edward Grey. Recommendersysteme auf Basis linearer Regression, 2004.

John A. Hartigan. Clustering Algorithms. John Wiley and Sons, New York, 1975.

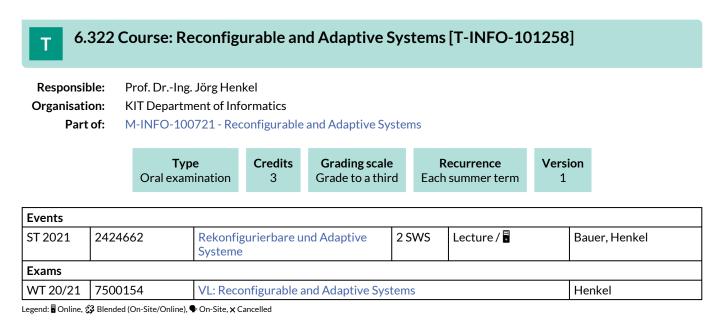
Kevin Kelly. New Rules for the New Economy: 10 Radical Strategies for a Connected World. Viking, 1998.

Taek-Hun Kim, Young-Suk Ryu, Seok-In Park, and Sung-Bong Yang. An improved recommendation algorithm in collaborative filtering. In K. Bauknecht, A. Min Tjoa, and G. Quirchmayr, editors, E-Commerce and Web Technologies, Third International Conference, Aix-en-Provence, France, volume 2455 of Lecture Notes in Computer Science, pages 254–261, Berlin, Sep 2002. Springer-Verlag.

Ron Kohavi, Brij Masand, Myra Spiliopoulou, and Jaideep Srivastava. Web mining. Data Mining and Knowledge Discovery, 6:5 – 8, 2002.

G. S. Maddala. Introduction to Econometrics. John Wiley, Chichester, 3 edition, 2001.

Andreas Mild and Martin Natter. Collaborative filtering or regression models for Internet recommendation systems? Journal of Targeting, Measurement and Analysis for Marketing, 10(4):304 – 313, Jan 2002.


Andreas Mild and Thomas Reutterer. An improved collaborative filtering approach for predicting cross-category purchases based on binary market basket data. Journal of Retailing & Consumer Services, 10(3):123–133, may 2003.

Paul Resnick and Hal R. Varian. Recommender Systems. Communications of the ACM, 40(3):56 - 58, Mar 1997.

Badrul M. Sarwar, Joseph A. Konstan, Al Borchers, Jon Herlocker, Brad Miller, and John Riedl. Using filtering agents to improve prediction quality in the grouplens research collaborative filtering system. In Proceedings of ACM Conference on Computer-Supported Cooperative Work, Social Filtering, Social Influences, pages 345 – 354, New York, 1998. ACM Press.

J. Ben Schafer, Joseph Konstan, and Jon Riedl. Recommender Systems in E-commerce. In Proceedings of the 1st ACM conference on Electronic commerce, pages 158 – 166, Denver, Colorado, USA, Nov 1999. ACM.

Upendra Shardanand and Patti Maes. Social information filtering: Algorithms for automating "word of mouth". In Proceedings of ACM SIGCHI, volume 1 of Papers: Using the Information of Others, pages 210 – 217. ACM, 1995.

Below you will find excerpts from events related to this course:

Rekonfigurierbare und Adaptive Systeme

2424662, SS 2021, 2 SWS, Language: German/English, Open in study portal

Lecture (V) Online

Content

Overview:

The requirements regarding performance, flexibility and energy efficiency of today's embedded systems are increasing continuously and the market has to react faster than before to changing trends and developments (e.g. for smartphones, netbooks, etc.). Established approaches based on standard processors, application-specific circuits (ASICs) or application-specific processors (ASIPs) are no longer able to adequately meet all of the above criteria.

Reconfiguration is a technique that allows parts of the hardware circuits to be changed at runtime. This is achieved, for example, by field-programmable logic arrays (FPGAs) or ALU arrays that are integrated into the corresponding ICs. Reconfigurable adaptive systems use this potential to adapt dynamically to changing requirements. In addition, the reconfigurability of the hardware can be used in a targeted manner to improve the reliability / failure safety of the systems, as is already used today, for example, in radiation-polluted environments such as Mars probes or at CERN.

Organisation:

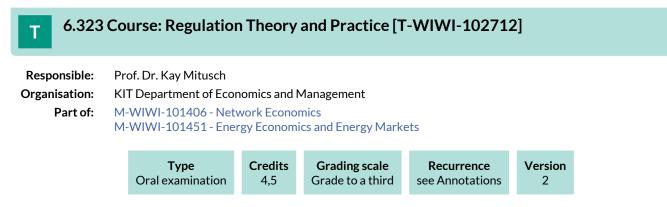
In summer term 2021 the lecture will NOT take place in -102, but will be streamed live via zoom. Details and URL can be found in ILAS: https://ilias.studium.kit.edu/goto.php?target=crs%5F1460759&client_id=produktiv The lecture slides are in English, but the lecture language is German.

Exams:

Exam number: 7500201

For exam dates, please fill out the form on our website: http://ces.itec.kit.edu/972.php

The success control takes place in the form of an oral examination of usually 25-30 minutes according to § 4 Abs. 2 Nr. 2 SPO.


Learning objectives: The students

- learn the basics of reconfigurable systems.
- understand the different characterizations of reconfigurable systems and their effects on the potential for adaptivity. have an overview of the methods for managing adaptivity (runtime system).
- are able to design and use adaptive systems for a given problem by applying the conveyed characterizations and runtime systems.
- get access to current research topics.

Recommendations:

Knowledge of the basics from "Rechnerstrukturen" is helpful.

Knowledge of the basics from "Optimierung und Synthese Eingebetteter Systeme (ES1)" is helpful.

Competence Certificate

The lecture is not offered for an indefinite period of time.

Result of success is made by a 20-30 minutes oral examination. Examination is offered every semester and can be retried at any regular examination date.

Prerequisites

None

Recommendation

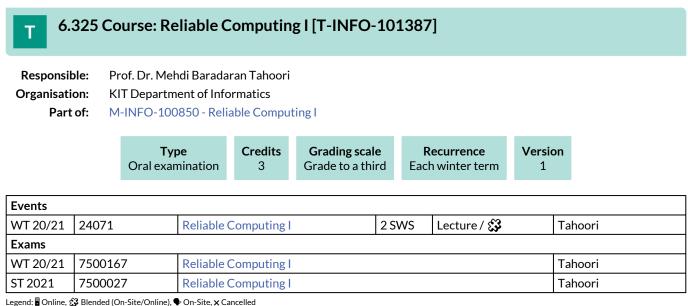
Basic knowledge and skills of microeconomics from undergraduate studies (bachelor's degree) are expected.

Particularly helpful but not necessary: Industrial Economics and Principal-Agent- or Contract theories. Prior attendance of the lecture *Competition in Networks* [26240] is helpful in any case but not considered a formal precondition.

Annotation

The lecture is not offered for an indefinite period of time.

6.324 Course: Reinforcement Learning and Neural Networks in Robotics [T-INFO-109928]


Responsible: Organisation: Part of:

Dr.-Ing. Pascal Meißner

tion: KIT Department of Informatics

: M-INFO-104894 - Reinforcement Learning and Neural Networks in Robotics

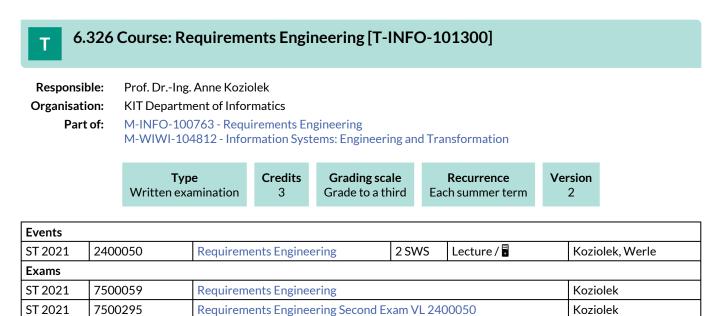
Below you will find excerpts from events related to this course:

Reliable Computing I

24071, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Blended (On-Site/Online)

Content


The objective of this course is to become familiar with general and state of the art techniques used in design and analysis of faulttolerant digital systems. The students will study and investigate existing fault-tolerant systems. Both Hardware and software methods will be studied and new research topics will be investigated.

This course overviews reliable (fault-tolerant) computing and the design and evaluation of dependable systems, and provides a base for research in reliable systems. Models and methods are used in the analysis and design of fault-tolerant and highly reliable computer systems will be taught in this course. Topics include faults and their manifestations, fault/error modeling, reliability, availability and maintainability analysis, system evaluation, performance-reliability trade-offs, system level fault diagnosis, hardware and software redundancy techniques, and fault-tolerant system design methods.

The objective of this course is to become familiar with general and state of the art techniques used in design and analysis of fault-tolerant digital systems.

Organizational issues

Bitte im Campussystem anmelden.

Legend: 🖥 Online, 🔀 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Recommendation

Das Modul Softwaretechnik II wird empfohlen.

Below you will find excerpts from events related to this course:

Requirements Engineering

2400050, SS 2021, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

Information for summer term 2021: The lecture will not be held in the summer term 2021. You can still register for the course, prepare the material by watching the recordings of last years' lectures, and take the exam.

Having a good requirements specification is a critical prerequisite for any successful software project. This lecture gives an introduction to processes, methods and representation forms for specifying and managing requirements.

The topics include background and general overview, processes and methods for requirements elicitation, specification with natural language, object-oriented specification, use cases, UML, specification of quality requirements and constraints, as well as requirements validation and management.

General remarks: The lecture is held in English and all lecture material is in English. The lecture has been recorded and the recordings will be made available on the Ilias platform.

Literature

The lecture is based on slides and works by Martin Glinz, which is why there is no book that accompanies the lecture. Students are welcome to discuss differences between the lecture and the content of the course in class.

Main suggestion: Pohl, K. (2010). Requirements Engineering: Fundamentals, Principles, and Techniques. Springer Verlag. (will be available in library)

Further reading:

- I. Alexander, R. Stevens (2002). Writing Better Requirements. London: Addison-Wesley.
- A. Davis (2005). Just Enough Requirements Management. New York: Dorset House.
- D.C. Gause, G.M. Weinberg (1989). Exploring Requirements: Quality before Design. New York: Dorset House.
- M. Glinz (2013). A Glossary of Requirements Engineering Terminology, Version 1.5. International Requirements Engineering Board (IREB). Originally published in 2011. Available at http://www.ireb.org (check-out CPRE Glossary)
- E. Gottesdiener (2002). Requirements by Collaboration: Workshops for Defining Needs. Boston: Addison-Wesley.
- M.A. Jackson (1995). Software Requirements and Specifications: A Lexicon of Practice, Principles and Prejudices. Addison-Wesley (ACM Press books): Wokingham, etc.
- A. van Lamsweerde (2009). Requirements Engineering: From System Goals to UML Models to Software Specifications. Chichester: John Wiley & Sons.
- S. Robertson, J. Robertson (2006). Mastering the Requirements Process. 2nd edition. Boston: Addison-Wesley.
- K. Wiegers (2006). More About Software Requirements: Thorny Issues and Practical Advice. Redmond: Microsoft Press.

6.327 Course: Research Project (Project, 1st Semester) - Oral Exam [T-INFO-110218]

Responsible:Prof. Dr. Bernhard BeckertOrganisation:KIT Department of InformaticsPart of:M-INFO-105037 - Research Project (Project, 1st Semester)

Events						
WT 20/21	2400068	Research Project (Project, first semester)	/ 🖻	Beckert, Beigl, Reussner, Kirsten		
ST 2021	2400047	Research Project (Project, first semester)	/ 🖥	Beckert, Beigl, Reussner, Kirsten		
Exams		· · ·				
WT 20/21	7500079	Research Project (Project, 1st Semester	Research Project (Project, 1st Semester) - Oral Exam			
ST 2021	7500114	Team Project (Project, 1st Semester) - C	Beckert, Beigl, Reussner			

Legend: Dolline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.328 Course: Research Project (Project, 1st Semester) - Presentation [T-INFO-110219]

Responsible:Prof. Dr. Bernhard BeckertOrganisation:KIT Department of InformaticsPart of:M-INFO-105037 - Research Project (Project, 1st Semester)

Type	Credits	Grading scale	Recurrence	Version	
Examination of another type	3	Grade to a third	Each term	1	

Events					
WT 20/21	2400068	Research Project (Project, first semester)		/ 🖥	Beckert, Beigl, Reussner, Kirsten
ST 2021	2400047	Research Project (Project, first semester)		/ =	Beckert, Beigl, Reussner, Kirsten
Exams					
WT 20/217500080Research Project (Project, 1st Semester) - PresentationBeckert, Beigl, Reussner					
ST 2021	7500130	Team Project (Project, 1st Semester) - Presentation			Beckert, Beigl, Reussner

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.329 Course: Research Project (Project, 1st Semester) - Project Proposal [T-INFO-110220]

Responsible:Prof. Dr. Bernhard BeckertOrganisation:KIT Department of InformaticsPart of:M-INFO-105037 - Research Project (Project, 1st Semester)

Type	Credits	Grading scale	Recurrence	Version	
Examination of another type	4	Grade to a third	Each term	1	

Events						
WT 20/21	2400068	Research Project (Project, first semester)		/ 🖥	Beckert, Beigl, Reussner, Kirsten	
ST 2021	2400047	Research Project (Project, first semester)	Beckert, Beigl, Reussner, Kirsten			
Exams						
WT 20/21	7500081	Research Project (Project, 1st Semest	Research Project (Project, 1st Semester) - Written Exam Beckert, Beigl, Reussner			
ST 2021	7500131	Team Project (Project, 1st Semester) - Project Proposal			Beckert, Beigl, Reussner	

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.330 Course: Research Project (Project, 2nd Semester) - Oral Exam [T-INFO-110221]

Responsible:Prof. Dr. Bernhard BeckertOrganisation:KIT Department of InformaticsPart of:M-INFO-105038 - Research Project (Project, 2nd Semester)

Туре	Credits	Grading scale	Recurrence	Version	
Oral examination	3	Grade to a third	Each term	2	

Events					
WT 20/21	2400070	Research Project (Project, second semester)	/ 🖥	Beckert, Beigl, Reussner, Kirsten	
ST 2021	2400053	Research Project (Project, second semester)	Beckert, Beigl, Reussner, Kirsten		
Exams					
WT 20/21	7500171	Research Project (Project, 2nd Semester)	Research Project (Project, 2nd Semester) - Oral Exam		
ST 2021	7500126	Team Project (Project, 2nd Semester) - O	Beckert, Beigl, Reussner		

Legend: Doline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.331 Course: Research Project (Project, 2nd Semester) - Presentation [T-INFO-110222]

 Responsible:
 Prof. Dr. Bernhard Beckert

 Organisation:
 KIT Department of Informatics

 Part of:
 M-INFO-105038 - Research Project (Project, 2nd Semester)

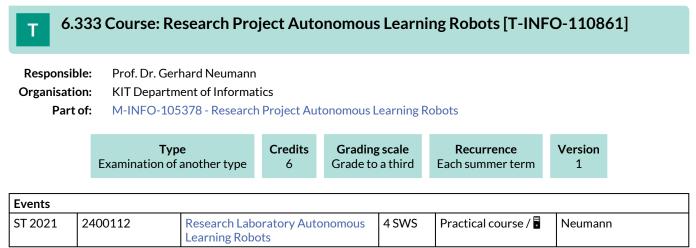
Type	Credits	Grading scale	Recurrence	Version	
Examination of another type	3	Grade to a third	Each term	1	

Events						
WT 20/21	2400070	Research Project (Project, second semester)			Beckert, Beigl, Reussner, Kirsten	
ST 2021	2400053	Research Project (Project, second semester)			Beckert, Beigl, Reussner, Kirsten	
Exams						
WT 20/21	7500077	Research Project (Project, 2nd Semes	Research Project (Project, 2nd Semester) - Presentation Beckert, Beigl, Reussner			
ST 2021	7500132	Team Project (Project, 2nd Semester) - Presentation			Beckert, Beigl, Reussner	

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.332 Course: Research Project (Project, 2nd Semester) - Scientific Report [T-INFO-110223]

 Responsible:
 Prof. Dr. Bernhard Beckert


 Organisation:
 KIT Department of Informatics

 Part of:
 M-INFO-105038 - Research Project (Project, 2nd Semester)

Type	Credits	Grading scale	Recurrence	Version	
Examination of another type	4	Grade to a third	Each term	1	

Events						
WT 20/21	2400070	Research Project (Project, second semester)		/ 8	Beckert, Beigl, Reussner, Kirsten	
ST 2021	2400053	Research Project (Project, second semester)			Beckert, Beigl, Reussner, Kirsten	
Exams						
WT 20/21	7500078	Research Project (Project, 2nd Semes	Research Project (Project, 2nd Semester) - Written Exam Beckert, Beigl, Reussner			
ST 2021	7500133				Beckert, Beigl, Reussner	

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

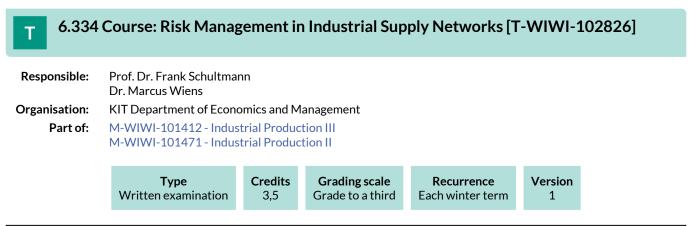
- The discussed algorithms have to be implemented successfully.
- The experiments need to be conducted scientifically and need to be well documented.
- The final report is well written and well structured

Below you will find excerpts from events related to this course:

,	Research Laboratory Autonomous Learning Robots	Practical course (P)
	2400112, SS 2021, 4 SWS, Language: German/English, Open in study portal	Online

Content

Inhalt


Each student has to choose one of the offered topics from the area of robot learning / reinforcement learning / imitation learning or deep learning for robotics. The students will conduct a literature survey to acquire an understanding of the field and then implement one or several algorithms. The algorithms need to be evaluated against available baselines on standard benchmark tasks as well as on (custom-made) physically realistic simulations and/or a real robot platform. The experiments have to be documented in a report

Experience in Machine Learning is recommended

Organizational issues

Ein Rücktritt ist innerhalb von zwei Wochen nach Vergabe des Themas möglich.

Arbeitsaufwand180h

2581992	Risk Management in Industrial Supply Networks	2 SWS	Lecture / 🖥	Wiens, Schultmann		
2581993	Übung zu Risk Management in Industrial Supply Networks	1 SWS	Practice /	Klein, Wiens		
Exams						
7981992	Risk Management in Industrial Su	Risk Management in Industrial Supply Networks				
	2581993	Supply Networks 2581993 Übung zu Risk Management in Industrial Supply Networks	Supply Networks Supply Networks 2581993 Übung zu Risk Management in Industrial Supply Networks 1 SWS	Supply Networks Supply Networks 2581993 Übung zu Risk Management in Industrial Supply Networks 1 SWS		

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following 4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (examination of another type, following 4(2), 3 of the examination regulation).

Prerequisites None

Recommendation

None

Below you will find excerpts from events related to this course:

Risk Management in Industrial Supply Networks

2581992, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

Students learn methods and tools to manage risks in complex and dynamically evolving supply chain networks. Students learn the key terms and concepts of risk management and decision theory, in particular expected utility theory. Based on the theoretic prerequisites, students are able to determine and analyze risk diversification, risk pooling, insurance mechanisms and get an overview on statistical risk measures and real options. These approaches are adapted to analyze supply chain risks in a network context. In this manner, students gain knowledge in basic notions of network theory, network metrics and network-strategies for supply chain decisions.

- Introduction
- Risks in decisions under uncertainty: Expected Utility Theory & risk preferences
- The newsvendor model; multivariate risks and insurance
- Risk measures & evaluation techniques: Value-at-Risk, Conditional Value at Risk, Monte Carlo and Real Options
- Transparency in complex supply chains
- Network risk: network basics and criticality
- Risk in supply networks: empirical approaches and insights

Literature

Wird in der Veranstaltung bekannt gegeben.

6.335 Course: Roadmapping [T-WIWI-102853] Т **Responsible:** Dr. Daniel Jeffrey Koch Organisation: KIT Department of Economics and Management Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon) M-WIWI-101507 - Innovation Management M-WIWI-101507 - Innovation Management Credits **Grading scale** Recurrence Version Type Grade to a third Examination of another type 3 Each summer term 1 **Events** ST 2021 2545102 2 SWS Seminar / Koch Roadmapping

Legend: Online, 🔀 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Non exam assessment (§4 (2), 3 SPO 2007) respectively alternative exam assessments (§4(2), 3 SPO).

Prerequisites

None

Recommendation

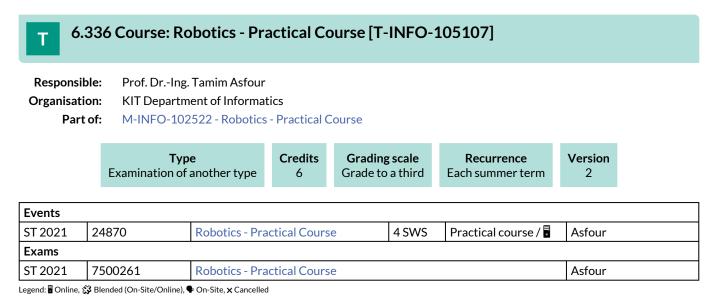
Prior attendance of the course Innovation Management is recommended.

Annotation

See German version.

Below you will find excerpts from events related to this course:

Roadmapping


2545102, SS 2021, 2 SWS, Language: German, Open in study portal

Content

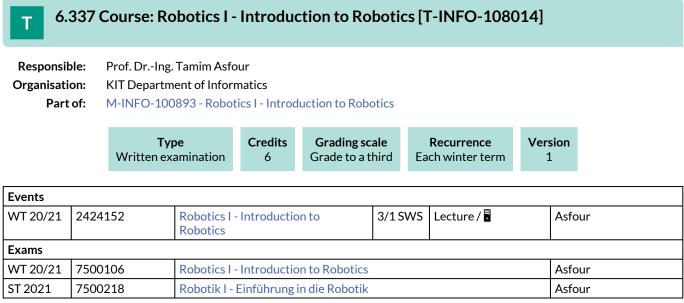
Technology Assessment can play a role at different points in the innovation process and can be considered as decision support for or against certain technological options. The seminar Technology Assessment will focus on the early phase "fuzzy front end" in innovation management. The technology assessment will take place here under a high degree of uncertainty regarding future technological developments. The evaluation of technologies can be done with methods such as Technology Readiness, Technology Lifecycle Analysis, Portfolio Analysis, etc.. The early evaluation of technologies is particularly important against the background of limited resources in companies and uncertainty about future developments.

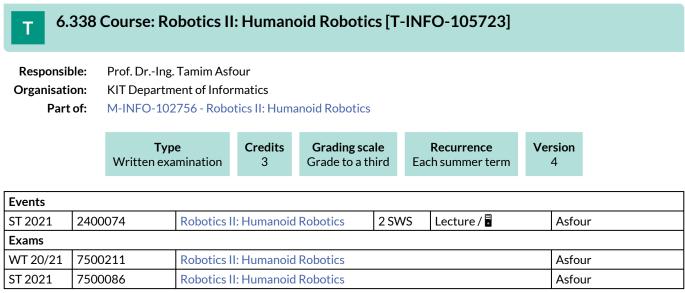
Seminar (S)

Online

Recommendation

Should have attended the lectures Robotics I - III, and Mechano-Informatics and Robotics.


Below you will find excerpts from events related to this course:


Robotics - Practical Course

24870, SS 2021, 4 SWS, Language: German, Open in study portal

Practical course (P) Online

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🔀 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Robotics II: Humanoid Robotics

2400074, SS 2021, 2 SWS, Language: German/English, Open in study portal

Lecture (V) Online

Content

The lecture presents current work in the field of humanoid robotics that deals with the implementation of complex sensorimotor and cognitive abilities. In the individual topics different methods and algorithms, their advantages and disadvantages, as well as the current state of research are discussed.

The topics addressed are: biomechanical models of the human body, biologically inspired and data-driven methods of grasping, active perception, imitation learning and programming by demonstration as well as semantic representations of sensorimotor experience

Learning Objectives:

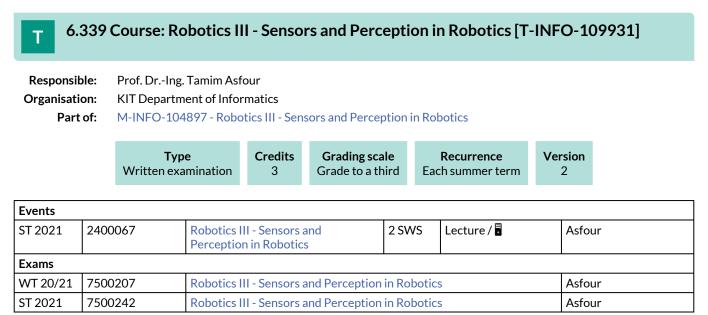
The students have an overview of current research topics in autonomous learning robot systems using the example of humanoid robotics. They are able to classify and evaluate current developments in the field of cognitive humanoid robotics.

The students know the essential problems of humanoid robotics and are able to develop solutions on the basis of existing research.

Organizational issues

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Arbeitsaufwand: 90 h


Voraussetzungen: Der Besuch der Vorlesungen Robotik I – Einführung in die Robotik und Mechano-Informatik in der Robotik wird vorausgesetzt

Zielgruppe: Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik

Literature

Weiterführende Literatur

Wissenschaftliche Veröffentlichungen zum Thema, werden auf der VL-Website bereitgestellt.

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Robotics III - Sensors and Perception in Robotics

2400067, SS 2021, 2 SWS, Language: German/English, Open in study portal

Lecture (V) Online

Content

The lecture supplements the lecture Robotics I with a broad overview of sensors used in robotics. The lecture focuses on visual perception, object recognition, simultaneous localization and mapping (SLAM) and semantic scene interpretation. The lecture is divided into two parts:

In the first part a comprehensive overview of current sensor technologies is given. A basic distinction is made between sensors for the perception of the environment (exteroceptive) and sensors for the perception of the internal state (proprioceptive).

The second part of the lecture concentrates on the use of exteroceptive sensors in robotics. The topics covered include tactile exploration and visual data processing, including advanced topics such as feature extraction, object localization, simultaneous localization and mapping (SLAM) and semantic scene interpretation.

Learning Obejctives:

Students know the main sensor principles used in robotics and understand the data flow from physical measurement through digitization to the use of the recorded data for feature extraction, state estimation and environmental modeling.

Students are able to propose and justify suitable sensor concepts for common tasks in robotics.

Organizational issues

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik

Voraussetzungen: Der Besuch der Vorlesung Robotik I - Einführung in die Robotik wird vorausgesetzt

Zielgruppe: Die Vorlesung richtet sich an Studierende der Informatik, der Elektrotechnik und des Maschinenbaus sowie an alle Interessenten an der Robotik.

Arbeitsaufwand: 90 h

Literature

Eine Foliensammlung wird im Laufe der Vorlesung angeboten.

Begleitende Literatur wird zu den einzelnen Themen in der Vorlesung bekannt gegeben.

Т 6.	340	Course: Se	ecurity [T	-INFO-1	01371]				
Responsible:Prof. Dr. Dennis Hofheinz Prof. Dr. Jörn Müller-QuadeOrganisation:KIT Department of Informatics Part of:Part of:M-INFO-100834 - Security									
		Tyr Written exa		Credits 6	Grading sca Grade to a th		Recurrence Each summer term	Version 1	I
Events									
ST 2021	2494	41	Security		3 SWS Lecture /		Mü	Müller-Quade, Strufe	
Exams									
WT 20/21	7500	0290	Security					Mü	ler-Quade, Strufe
ST 2021	7524	1941	Security					Mü	ler-Quade, Strufe

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

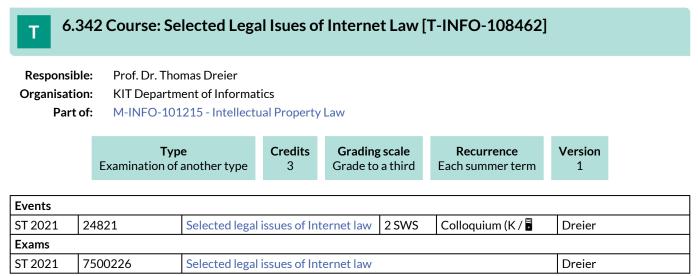
Responsible:	Prof. Dr. Ali Sunyaev
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-104403 - Critical Digital Infrastructures

	Examinatio	Type n of another type	Credits 4,5	Grading Grade to a	Recurrence Each summer term	Version 2
Events						
WT 20/21	2512403	Practical Cour Hackathon (M		ain	Practical course / 🕄	Sunyaev Kanneng

ST 2021	2512403	Advanced Lab Blockchain Hackathon (Master)		Practical course / 🖥	Sunyaev, Beyene, Kannengießer		
Exams	Exams						
ST 2021	7900172	Lab Blockchain Hackathon (Master)			Sunyaev		

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate


Alternative exam assessment (§ 4(2), 3 SPO). Details will be announced in the respective course.

Prerequisites

None.

Annotation

T-WIWI-109251 "Selected Issues in Critical Information Infrastructures" serves to credit an extracurricular course in the module "Critical Digital Infrastructures".

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

T 6.343 Course: Semantic Web Technologies [T-WIWI-110848]

Responsible:	Tobias Christof Käfer
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101455 - Web Data Management M-WIWI-101456 - Intelligent Systems and Services M-WIWI-105366 - Artificial Intelligence

Туре	Credits	Grading scale	Recurrence	Version
Written examination	4,5	Grade to a third	Each summer term	1

Events						
ST 2021	2511310	Semantic Web Technologies	2 SWS	Lecture /	Färber, Käfer, Heling	
ST 2021	2511311	Exercises to Semantic Web Technologies	1 SWS	Practice / 🖥	Färber, Käfer, Heling	
Exams						
WT 20/21	20/21 7900022 Semantic Web Technologies (Registration until 08 February 2021) Sure-Vetter				Sure-Vetter	
ST 2021	7900028	Gemantic Web Technologies (Registration until 12 July 2021) Färber			Färber	

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation or of an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None

Recommendation

Lectures on Informatics of the Bachelor on Information Systems (Semester 1-4) or equivalent are required.

Below you will find excerpts from events related to this course:

Semantic Web Technologies

2511310, SS 2021, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

The aim of the Semantic Web is to make the meaning (semantics) of data on the web usable in intelligent systems, e.g. in ecommerce and internet portals

Central concepts are the representation of knowledge in form of RDF and ontologies, the access via Linked Data, as well as querying the data by using SPARQL. This lecture provides the foundations of knowledge representation and processing for the corresponding technologies and presents example applications.

The following topics are covered:

- Resource Description Framework (RDF) and RDF Schema (RDFS)
- Web Architecture and Linked Data
- Web Ontology Language (OWL)
- Query language SPARQL
- Rule languages
- Applications

Learning objectives:

The student

- understands the motivation and foundational ideas behind Semantic Web and Linked Data technologies, and is able to analyse and realise systems
- demonstrates basic competency in the areas of data and system integration on the web
- masters advanced knowledge representation scenarios involving ontologies

Recommendations:

Lectures on Informatics of the Bachelor on Information Systems (Semester 1-4) or equivalent are required. Knowledge of modeling with UML is required.

Workload:

- The total workload for this course is approximately 135 hours
- Time of presentness: 45 hours
- Time of preperation and postprocessing: 60 hours
- Exam and exam preperation: 30 hours

Literature

- Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, York Sure: Semantic Web Grundlagen. Springer, 2008.
- John Domingue, Dieter Fensel, James A. Hendler (Editors). Handbook of Semantic Web Technologies. Springer, 2011.

Weitere Literatur

- S. Staab, R. Studer (Editors). Handbook on Ontologies. International Handbooks in Information Systems. Springer, 2003.
- Tim Berners-Lee. Weaving the Web. Harper, 1999 geb. 2000 Taschenbuch.
- Ian Jacobs, Norman Walsh. Architecture of the World Wide Web, Volume One. W3C Recommendation 15 December 2004. http://www.w3.org/TR/webarch/
- Dean Allemang. Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL. Morgan Kaufmann, 2008.
- Tom Heath and Chris Bizer. Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web: Theory and Technology, 2011.

Exercises to Semantic Web Technologies

2511311, SS 2021, 1 SWS, Language: English, Open in study portal

Practice (Ü) Online

The exercises are related to the lecture Semantic Web Technologies.

Multiple exercises are held that capture the topics, held in the lecture Semantic Web Technologies, and discuss them in detail. Thereby, practical examples are given to the students in order to transfer theoretical aspects into practical implementation.

The following topics are covered:

- Resource Description Framework (RDF) and RDF Schema (RDFS)
- Web Architecture and Linked Data
- Web Ontology Language (OWL)
- Query language SPARQL
- Rule languages
- Applications

Learning objectives:

The student

- understands the motivation and foundational ideas behind Semantic Web and Linked Data technologies, and is able to analyse and realise systems
- demonstrates basic competency in the areas of data and system integration on the web
- masters advanced knowledge representation scenarios involving ontologies

Recommendations:

Lectures on Informatics of the Bachelor on Information Systems (Semester 1-4) or equivalent are required. Knowledge of modeling with UML is required.

Literature

- Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, York Sure: Semantic Web Grundlagen. Springer, 2008.
- John Domingue, Dieter Fensel, James A. Hendler (Editors). Handbook of Semantic Web Technologies. Springer, 2011.

Weitere Literatur

- S. Staab, R. Studer (Editors). Handbook on Ontologies. International Handbooks in Information Systems. Springer, 2003.
- Tim Berners-Lee. Weaving the Web. Harper, 1999 geb. 2000 Taschenbuch.
- Ian Jacobs, Norman Walsh. Architecture of the World Wide Web, Volume One. W3C Recommendation 15 December 2004. http://www.w3.org/TR/webarch/
- Dean Allemang. Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL. Morgan Kaufmann, 2008.
- Tom Heath and Chris Bizer. Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web: Theory and Technology, 2011.

Responsible:Professorenschaft des Fachbereichs BetriebswirtschaftslehreOrganisation:KIT Department of Economics and ManagementPart of:M-WIWI-102736 - Seminar Module Economic Sciences

		Examinatio	Type n of another type	Credits 3		ling scale e to a third	Recurrence Each term	Version 1	
Events									
WT 20/21	2500	006	Seminar Human R Management (Ma			2 SWS	Seminar / 🖥	Niek	en, Mitarbeiter
WT 20/21	2500	007	Seminar Human F Organizations (M	Resources an	nd	2 SWS	Seminar / 🖥	Niek	en, Mitarbeiter
WT 20/21	2500	019	Digital Citizen Sci	ience		2 SWS	Seminar / 🖥	Weir Maye	nhardt, Volkamer, er
WT 20/21	2500	043	Collaborative Dev Conversational A		f	3 SWS	Seminar / 🖥	Mäde	che, Gnewuch
WT 20/21	2500	125	Current Topics in Transformation S			3 SWS	Seminar / 🕃	Mäde	che
WT 20/21	2530	293				2 SWS	Seminar / 🖥	Stryc	es, Hoang, Benz, ch, Luedecke, reis, Wiegratz
WT 20/21	2530	372	Advances in Finar Learning	ncial Machin	е	2 SWS	Seminar / 🖥	Ulric	h
WT 20/21	2540	442	Quantitative desc behavior using R	criptions of h	numan	2,5 SWS	Seminar / 🖥	Sche	ibehenne, Liu
WT 20/21	2540	443	Psychologische P individuellen Ents			2 SWS	Seminar / 🖥	Sche	ibehenne, Seidler
WT 20/21	2540	473	Data Science in Se Management	ervice		2 SWS	Seminar / 🖥		oner, Dann, witz, Stoeckel
WT 20/21	2540	475	Electronic Marke	ts & User be	havior	2 SWS	Seminar / 🖥	Knie	rim
WT 20/21	2540	477	Digital Experience	e and Partici	pation	2 SWS	Seminar / 🖥	Hoff Willr Fege	ıb, Peukert, mann, Pusmaz, ich, Kloepper, rt, Greif- rrieth
WT 20/21	2540	478	Smart Grids and E	Energy Mark	ets	2 SWS	Seminar / 🖥	vom	dt, Richter, Huber, Scheidt, Golla, nidt, Henni, ıke
WT 20/21	2540	510	Master Seminar in Machine Learning		ce and	2 SWS	Seminar	/-	er-Schulz, /eigert, Schweizer, emi
WT 20/21	2540	557	Information Syste Design Seminar	ems and Serv	/ice	3 SWS	Seminar	Mäde	che
WT 20/21	2540	559	Digital Service De	esign Semina	ir	3 SWS	Seminar	Mäd	che
WT 20/21	2545	107	Methoden im Innovationsmana	gement		2 SWS	Seminar / 🖥	Koch	1
WT 20/21	2545	111	Methoden entlan Innovationsproze			2 SWS	Seminar / 🖥	Beye	r
WT 20/21	2550	493	Hospital Manager	ment		2 SWS	Seminar	Hans	sis
WT 20/21	2579	910	Entrepreneurial S Financing of Start			2 SWS	Seminar / 🖥	Burk	ardt

WT 20/21	2579919	Seminar Management Accounting - Special Topics	2 SWS	Seminar / 🗣	Riar, Wouters, Ebinger
WT 20/21	2581976	Seminar in Production and Operations Management I	2 SWS	Seminar / 🖥	Glöser-Chahoud, Schultmann
WT 20/21	2581977	Seminar in Production and Operations Management II	2 SWS	Seminar / 🖥	Volk, Schultmann
WT 20/21	2581978	Seminar in Production and Operations Management III	2 SWS	Seminar / 🖥	Wiens, Schultmann
WT 20/21	2581980		2 SWS	Seminar / 🖥	Yilmaz, Fraunholz, Dehler-Holland, Kraft
WT 20/21	2581981		2 SWS	Seminar / 🖥	Ardone, Sandmeier, Scharnhorst
WT 20/21	2581990		2 SWS	Seminar	Schumacher, Schultmann
ST 2021	2400121	Interactive Analytics Seminar	2 SWS	/ 🖬	Beigl, Mädche, Pescara
ST 2021	2500007	Food Choice	2 SWS	Seminar / 🖥	Seidler, Scheibehenne
ST 2021	2500043	Collaborative Development of Conversational Agents	3 SWS	Seminar / 🖥	Mädche, Gnewuch
ST 2021	2500125	Current Topics in Digital Transformation Seminar	3 SWS	Seminar / 🕄	Mädche
ST 2021	2530372	Advances in Financial Machine Learning	2 SWS	Seminar / 🖥	Ulrich
ST 2021	2530580	Seminar in Finance (Master) - Corona crisis and the financial markets		Seminar / 🖥	Uhrig-Homburg
ST 2021	2540473	Business Data Analytics	2 SWS	Seminar / 🖥	Dann, Stoeckel, Grote, Badewitz
ST 2021	2540475	Electronic Markets & User Behavior		Seminar / 🖥	Knierim, Dann, Jaquart
ST 2021	2540477	Digital Experience & Participation	2 SWS	Seminar / 🖥	Peukert, Greif- Winzrieth
ST 2021	2540478	Smart Grid Economics & Energy Markets	2 SWS	Seminar / 🖥	Staudt, Huber, Richter, vom Scheidt, Golla, Henni, Schmidt, Meinke, Qu
ST 2021	2540510	Master Seminar in Data Science and Machine Learning	2 SWS	Seminar / 🖥	Geyer-Schulz
ST 2021	2540557	Information Systems and Service Design Seminar	3 SWS	Seminar / 🖥	Mädche
ST 2021	2540559	Digital Service Design Seminar	3 SWS	Seminar / 🖥	Mädche
ST 2021	2540588	Economic Psychology in Action	2 SWS	Seminar / 🖥	Liu
ST 2021	2545002	Entrepreneurship Research	2 SWS	Seminar / 🖥	Henn, Manthey, Terzidis
ST 2021	2550493	Hospital Management	2 SWS	Block /	Hansis
ST 2021	2571180	Seminar in Marketing und Vertrieb (Master)	2 SWS	Seminar / 🖥	Klarmann, Mitarbeiter
ST 2021	2573012	Seminar Human Resource Management (Master)	2 SWS	Seminar / 🖥	Nieken, Mitarbeiter
ST 2021	2573013	Seminar Human Resources and Organizations (Master)	2 SWS	Seminar / 🖥	Nieken, Mitarbeiter
ST 2021	2579909	Seminar Management Accounting	2 SWS	Seminar / 🖥	Wouters, Hammann, Disch
ST 2021	2579910	Entrepreneurial Strategy and Financing of Start-Ups	2 SWS	Seminar / 🖥	Burkardt
ST 2021	2579919	Seminar in Management Accounting - Special Topics	2 SWS	Seminar / 🖥	Ebinger
ST 2021	2581030	Seminar Energiewirtschaft IV	2 SWS	Seminar / 🖥	Plötz

ST 2021	2581977	Seminar Produktionswirtschaft und Logistik II	2 SWS	Seminar / 🖥	Volk, Schultmann
ST 2021	2581980	Seminar Energiewirtschaft II	2 SWS	Seminar / 🖥	Fichtner
ST 2021	2581990		2 SWS	Seminar / 🖥	Schultmann
Exams					
WT 20/21	00042	Seminar Business Data Analytics			Weinhardt
WT 20/21	7900017	Seminar Smart Grid and Energy Mar	kets		Weinhardt
WT 20/21	7900037	Seminar in Business Administration	A (Master)		Satzger
WT 20/21	7900106	Hospital Management			Nickel
WT 20/21	7900125	Current Topics in Digital Transforma	ation Semi	nar	Mädche
WT 20/21	7900133	Digital Service Design Seminar			Mädche
WT 20/21	7900151	Master Seminar in Data Science and	Machine L	.earning	Geyer-Schulz
WT 20/21	7900163	Seminar Human Resource Managem	ent (Maste	er)	Nieken
WT 20/21	7900164	Seminar Human Resources and Orga	nizations	(Master)	Nieken
WT 20/21	7900165	Seminar Digital Experience and Parti	icipation		Weinhardt
WT 20/21	7900184	Seminar in Finance (Master)			Ruckes
WT 20/21	7900203	Seminar in Finance			Uhrig-Homburg
WT 20/21	7900221	Advances in Financial Machine Learr	ning		Ulrich
WT 20/21	7900233	Information Systems and Service De	sign Semir	nar	Mädche
WT 20/21	7900237	Case Studies Seminar: Innovation Ma	-		Weissenberger-Eibl
WT 20/21	7900239	Technologies for Innovation Manage	ement		Weissenberger-Eibl
WT 20/21	7900277	Entrepreneurial Strategy and Financ	ing of Star	t-Ups	Lindstädt
WT 20/21	7900291	Psychological processes in individual	-		Scheibehenne
WT 20/21	7900306	Methods in Innovation Management			Weissenberger-Eibl
WT 20/21	7900307	Strategic Foresight China			Weissenberger-Eibl
WT 20/21	7900310	Methods along the Innovation proce	SS		Weissenberger-Eibl
WT 20/21	7900315	Quantitative descriptions of human l		sing R	Scheibehenne
WT 20/21	7900327	Electronic Markets & User behavior			Weinhardt
WT 20/21	7900330	Seminar Digital Citizen Science			Weinhardt
WT 20/21	79-2579919-M	Seminar Management Accounting - S	Special Top	pics (Master)	Wouters
WT 20/21	7981976	Seminar in Production and Operation			Schultmann
WT 20/21	7981977	Seminar in Production and Operation	ns Manage	ement II	Schultmann
WT 20/21	7981978	Seminar in Production and Operation	ns Manage	ement III	Schultmann
WT 20/21	7981979	Seminar in Business Administration	-		Fichtner
WT 20/21	7981980	Seminar in Business Administration			Fichtner
WT 20/21	7981981	Seminar in Business Administration			Fichtner
ST 2021	7500148	Proseminar: Practical Seminar: Inter		llytics	Beigl, Mädche
ST 2021	7900008	Hospital Management			Nickel
ST 2021	7900036	Collaborative Development of Conve	ersational	Agents	Mädche
ST 2021	7900052	Entrepreneurship Research			Terzidis
ST 2021	7900093	Seminar in Business Administration	Ą		Weinhardt
ST 2021	7900101	Seminar Human Resource Managem	ent (Maste	er)	Nieken
ST 2021	7900190	Current Topics in Digital Transforma			Mädche
ST 2021	7900219	Entrepreneurial Strategy and Financ			Lindstädt
ST 2021	7900233	Seminar in Marketing and Sales			Klarmann
ST 2021	7900244	Digital Service Design Seminar			Mädche
ST 2021	7900261	Information Systems and Design (ISS	D) Semina	ar	Mädche
ST 2021	7900265	Interactive Analytics Seminar			Mädche
ST 2021	79-2579909-M	Seminar Management Accounting (N	laster)		Wouters
ST 2021	79-2579919-M	Seminar Management Accounting - S		oics (Master)	Wouters
ST 2021	79-2579929-M	Seminar Management Accounting - E			

ST 2021	7981976	Seminar in Production and Operations Management I	Schultmann
ST 2021	7981977	Seminar in Production and Operations Management II	Schultmann
ST 2021	7981978	Seminar in Production and Operations Management III	Schultmann
ST 2021	7981979	Seminar Energy Economics I	Fichtner
ST 2021	7981980	Seminar Energy Economics II	Fichtner
ST 2021	7981981	Seminar Energy Economics III	Fichtner

Legend: Dolline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Content

The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim

The student

- looks critically into current research topics in the fields of Human Resource Management and Personnel Economics.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload

The total workload for this course is: approximately 90 hours.

Lecture: 30h Preparation of lecture: 45h Exam preparation: 15h

Literature

Selected journal articles and books.

Seminar Human Resources and Organizations (Master) 2500007, WS 20/21, 2 SWS, Language: German, Open in study portal

Seminar (S) Online

Content

The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim

The student

- looks critically into current research topics in the fields of human resources and organizations.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload

The total workload for this course is: approximately 90 hours.

Lecture: 30h Preparation of lecture: 45h Exam preparation: 15h

Literature

Selected journal articles and books.

Organizational issues

Blockveranstaltung siehe Homepage

Digital Citizen Science

2500019, WS 20/21, 2 SWS, Language: German/English, Open in study portal

Seminar (S) Online

Content

Digital Citizen Science is an innovative approach to conduct field research - interactively and in the real world. Especially in times of social distancing measures essential questions about how private lives are changing are investigated. Who is experiencing more stress during HomeOffice hours? Who is flourishing while learning at home because flow is experienced more often? Which formats of digital cooperation are fostering social contacts and bonding? These and other questions that target the main topic: Well-being @Home are focused in these seminar projects.

The seminar theses are supervised by academics from multiple institutes that are working together on the topic of Digital Citizen Science arbeiten. Involved are the research groups of Prof. Mädche, Prof. Nieken, Prof. Scheibehenne, Prof. Szech, Prof. Volkamer, Prof. Weinhardt and Prof. Woll.

Collaborative Development of Conversational Agents 2500043, WS 20/21, 3 SWS, Language: English, Open in study portal

Seminar (S) Online

This course focuses on the design, development, deployment, and evaluation of conversational agents (e.g., chatbots or voice assistants) for a given problem domain (e.g., customer service, team collaboration). The aim of the course is to introduce conceptual and technical foundations of conversational agents, relevant theories of human-computer interaction, and design guidelines for different classes of conversational agents. In addition, the course will introduce the human-centered design approach adapted to the design of conversational agents, including several qualitative and quantitative evaluation approaches.

The entire course is held virtually with no physical meetings, providing a first experience for future workplace scenarios. The course is a joint offering together with Saarland University (Prof. Stefan Morana) and Technische Universität Dresden (Prof. Benedikt Brendel). Students will work collaboratively in virtual teams with students from the other universities (i.e., one student per university in one team). Each student team will iteratively design, develop, and evaluate a conversational agent using contemporary technology tools (e.g., Google Dialogflow, Microsoft Bot Framework, Rasa). The teams document their activities and results in a project report. The project report as well as the conversational agent prototype are the basis for the grading of the course.

The entire course is limited to 15 participants (5 per university) and requires a short registration. More details will be made available on our website.

After completing this course, the course participants will be able to:

- explain conceptual and technical foundations of conversational agents
- perform the human-centered design approach to design, develop, and evaluate a conversational agent
- develop conversational agents using state-of-the-art tools and frameworks
- apply qualitative and quantitative methods to evaluate conversational agent prototypes

Requirements

- Programming skills are beneficial
- Experience or general interest in human-computer interaction
- English communication skills

Literature

Relevant literature will be made available in the seminar.

Advances in Financial Machine Learning

2530372, WS 20/21, 2 SWS, Language: English, Open in study portal

Seminar (S) Online

Content

Machine learning (ML) is changing virtually every aspect of our lives. Today ML algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is the most exciting time to adopt a disruptive technology that will transform how everyone invests for generations.

In this seminar we will apply modern machine learning techniques hands on to important computational risk and asset management problems. In particular we will use the state of the art Python programming language to implement investment related applications and/ or Finance 4.0 risk management solutions.

In a bi-weekly schedule you and your supervisor will first learn and discuss important machine learning concepts and then apply it within a practical FinTech project to real-world data. As a prerequisite students should already have some basic Python and data science skills.

Organizational issues

14-tägig, tba

Literature

Literatur wird in der ersten Vorlesung bekannt gegeben.

Content Description

The goal of this course is to help students develop a basic understanding of how quantitative modeling and simulations are used in behavioral research, especially in tracking/explaining behavior observed in experiments. The course will take a seminar form. Students will be assigned to read one journal article per week, with special attention paid to the quantitative/modeling part of the paper. In the weekly lecture/discussion that follows, we will talk about the article, try to reproduce the models/simulations along with their predictions and results using R, and discuss possible extensions of the work.

English will be the language used in all lectures, discussions, course materials, and assessments.

Competence Certificate

The assessment consists of writing two R scripts that implement certain functions specified by the instructor. The first assessment will be due after 8 weeks and the second will be due one week after the last lecture.

Workload

Students are expected to spend a total of 90 hours (30 hours per ECTS) on this class. Weekly lecture/discussion will have an average duration of 2 hours. Reading and programming assignments will take an average of 4 hours each week.

Prerequisite

Basic knowledge of the R language. Familiarity with concepts and operations such as vectors, functions, reading and writing data, conditional statements is considered sufficient.

Data Science in Service Management 2540473, WS 20/21, 2 SWS, Language: German/English, Open in study portal Seminar (S) Online

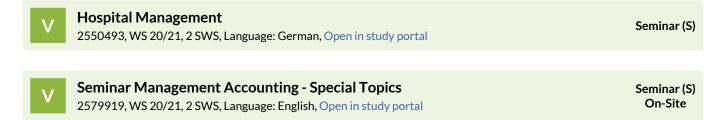
Seminar (S) Online

Content

wird auf deutsch und englisch gehalten

Organizational issues

Blockveranstaltung, siehe WWW


Methoden im Innovationsmanagement 2545107, WS 20/21, 2 SWS, Language: German, Open in study portal

Content

The seminar "Methods in Innovation Management" aims at the discussion and development of different methods for the structured generation of ideas in selected contexts. In a block seminar, methods and contexts are discussed, from which seminar topics are defined with the participants. These topics are to be worked on independently using methods and procedures. The results will be presented at a presentation date and then a written seminar paper will be prepared. This means that creativity methods and their combination will be presented and applied. The methods are worked on in a structured form and process-like sequence in order to clarify the advantages and disadvantages of different methods.

Literature

Werden in der ersten Veranstaltung bekannt gegeben.

The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in several meetings that are spread throughout the semester.

Learning objectives:

- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources.

Examination:

- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Workload:

• The total workload for this course is approximately 90 hours. For further information see German version.

Note:

• Maximum of 16 students.

Literature

Will be announced in the course.

Interactive Analytics Seminar

2400121, SS 2021, 2 SWS, Language: English, Open in study portal

Online

Content

Providing new and innovative ways for interacting with data is becoming increasingly important. In this seminar, an interdisciplinary team of students engineers a running software prototype of an advanced interactive system leveraging state-of-the-art hardware and software focusing on an analytical use case. The seminar is carried out in cooperation between Teco/Chair of Pervasive Computing Systems (Prof. Beigl) and the Institute of Information Systems and Marketing (Research Group ISSD, Prof. Mädche). This seminar follows an interdisciplinary approach. Students the fields of computer science, information systems and industrial engineering work together in teams.

Learning Objectives

- Explore and specify a data-driven interaction challenge
- Suggest and evaluate different design solutions for addressing the identified problem
- Build interactive analytics prototypes using advanced interaction concepts and pervasive computing technologies

Prerequisites

Strong analytic abilities and profound skills in SQL as wells as Python and/or R are required.

Literature

Further literature will be made available in the seminar.

Organizational issues

nach Vereinbarung

Collaborative Development of Conversational Agents 2500043, SS 2021, 3 SWS, Language: English, Open in study portal Seminar (S) Online

This course focuses on the design, development, deployment, and evaluation of conversational agents (e.g., chatbots or voice assistants) for a given problem domain (e.g., customer service, team collaboration). The aim of the course is to introduce conceptual and technical foundations of conversational agents, relevant theories of human-computer interaction, and design guidelines for different classes of conversational agents. In addition, the course will introduce the human-centered design approach adapted to the design of conversational agents, including several qualitative and quantitative evaluation approaches.

The entire course is held virtually with no physical meetings, providing a first experience for future workplace scenarios. The course is a joint offering together with Saarland University (Prof. Stefan Morana) and Technische Universität Dresden (Prof. Benedikt Brendel). Students will work collaboratively in virtual teams with students from the other universities (i.e., one student per university in one team). Each student team will iteratively design, develop, and evaluate a conversational agent using contemporary technology tools (e.g., Google Dialogflow, Microsoft Bot Framework, Rasa). The teams document their activities and results in a project report. The project report as well as the conversational agent prototype are the basis for the grading of the course.

The entire course is limited to 15 participants (5 per university) and requires a short registration. More details will be made available on our website.

After completing this course, the course participants will be able to:

- explain conceptual and technical foundations of conversational agents
- perform the human-centered design approach to design, develop, and evaluate a conversational agent
- develop conversational agents using state-of-the-art tools and frameworks
- apply qualitative and quantitative methods to evaluate conversational agent prototypes

Requirements

- Programming skills are beneficial
- Experience or general interest in human-computer interaction
- English communication skills

Literature

Relevant literature will be made available in the seminar.

Advances in Financial Machine Learning

2530372, SS 2021, 2 SWS, Language: English, Open in study portal

Seminar (S) Online

Content

Machine learning (ML) is changing virtually every aspect of our lives. Today ML algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is the most exciting time to adopt a disruptive technology that will transform how everyone invests for generations.

In this seminar we will apply modern machine learning techniques hands on to important computational risk and asset management problems. In particular we will use the state of the art Python programming language to implement investment related applications and/ or Finance 4.0 risk management solutions.

In a bi-weekly schedule you and your supervisor will first learn and discuss important machine learning concepts and then apply it within a practical FinTech project to real-world data. As a prerequisite students should already have some basic Python and data science skills.

Organizational issues

14-tägig, tba

Literature

Literatur wird in der ersten Vorlesung bekannt gegeben.

V	Master Seminar in Data Science and Machine Learning 2540510, SS 2021, 2 SWS, Language: German/English, Open in study portal	Seminar (S) Online
V	Information Systems and Service Design Seminar 2540557, SS 2021, 3 SWS, Language: English, Open in study portal	Seminar (S) Online

With this seminar, we aim to provide students with the possibility to independently work on state-of-the-art research topics in addition to the knowledge gained in the lectures of the research group ISSD (Prof. Mädche). The research group "Information Systems & Service Design" (ISSD) headed by Prof. Mädche focuses in research, education, and innovation on designing interactive intelligent systems. It is positioned at the intersection of Information Systems and Human-Computer Interaction (HCI).

In the seminar, participants will get deeper insights in a contemporary research topic in the field of information systems, specifically interactive intelligent systems.

The actual seminar topics will be derived from current research activities of the research group. Our research assistants offer a rich set of topics from our research clusters (digital experience and participation, intelligent enterprise systems, or digital services design & innovation). Students can select among these topics individually depending on their personal interests. The seminar is carried out in the form of a literature-based thesis project. In the seminar, students will acquire the important methodological skills of running a systematic literature review.

Learning Objectives

- focus on a contemporary topic at the intersection of Information Systems and Human-Computer Interaction (HCI), specifically interactive intelligent systems
- carry out a structured literature search for a given topic
- aggregate the collected information in a suitable way to present and extract knowledge
- write a seminar thesis following academic writing standards
- deliver a presentation in a scientific context in front of an auditorium

Prerequisites

No specific prerequisites are required for the seminar.

Literature

Further literature will be made available in the seminar.

Organizational issues

Termine werden bekannt gegeben

Digital Service Design Seminar

2540559, SS 2021, 3 SWS, Language: English, Open in study portal

Seminar (S) Online

Content Description

In this seminar, a team of students addresses a real-world design challenge of an IISM cooperation partner. Students learn and apply design methods, techniques, and tools to explore the problem and deliver a solution in the form of an innovative prototype

Learningobjectives

The students

- explore a real-world digital service design challenge
- understand the human-centered design process and apply selected design techniques & tools
- deliver a digital service prototype as a potential solution for the challenge

Prerequisites

No specific prerequisites are required for the seminar

Literature

Further literature will be made available in the seminar.

Organizational issues

Termine werden bekannt gegeben

Economic Psychology in Action

2540588, SS 2021, 2 SWS, Language: English, Open in study portal

Seminar (S) Online

Seminar (S) Online

> Block (B) Online

Online

Content Description

This blocked event contains 3 stages.

In Stage 1, students meet online for one day and experience recent economic psychology research as participants. The research topics will mainly consist of novel economic games with certain level of strategic depth (i.e., we will not play simple games like rock paper scissors, nor we will play games that many people are familiar with like the prisoner's dilemma).

In Stage 2, students will receive the data from the games they played in Stage 1 along with a few journal articles assigned by the instructor on related topics. Based on reading, they choose one of the datasets from Stage 1 to write up a short report.

In Stage 3, students will try to design and conduct a study on a related topic themselves based on what they have learned in the previous stages. They will collect their own data and write a research report. The nature of this project is to be determined together by the students and instructor. It would either be ideas generated by the students themselves, or something assigned by the instructor.

English will be the language used in all discussions, course materials, and assessments.

Competence Certificate

The assessment is based on the short report in Stage 2 and the research report in Stage 3.

Workload

Students are expected to spend a total of 90 hours (30 hours per ECTS), including meeting and assignments, on this seminar.

Organizational issues

Blockveranstaltung, Temrine werden bekanntgegeben

Entrepreneurship Research

2545002, SS 2021, 2 SWS, Language: German, Open in study portal

Organizational issues

Block am 21.04., 05.05., 14.07.

Literature

Wird im Seminar bekannt gegeben.

Hospital Management

2550493, SS 2021, 2 SWS, Language: German, Open in study portal

Content

The seminar 'Hospital Management' presents internal organization structures, work conditions and work environments at the example of hospitals und relates this to common and expected conditions of other service industries.

Covered topics include normative environment, intra-organizational structure, personnel management, quality, external networking and market appearance. The course consists of two full-day sessions.

The assessment consists of attendance and a presentation or a case study.

Organizational issues

von Montag, 17. Mai bis Samstag, 22. Mai jeweils von 7:30 bis 9:15 Uhr

Seminar Human Resource Management (Master) Seminar (S) 2573012, SS 2021, 2 SWS, Language: German, Open in study portal

The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim

The student

- looks critically into current research topics in the fields of Human Resource Management and Personnel Economics.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up
- the crucial facts.cultivates the discussion of research approaches.

Workload

The total workload for this course is: approximately 90 hours.

Lecture: 30h Preparation of lecture: 45h Exam preparation: 15h

Literature

Selected journal articles and books.

Organizational issues

Geb. 05.20, Raum 2A-12.1, Termine werden bekannt gegeben

Seminar Human Resources and Organizations (Master) Seminar Human Resources and Organizations (Master) Seminar 400
Seminar (S) Online

Content

The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim

The student

- looks critically into current research topics in the fields of human resources and organizations.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload

The total workload for this course is: approximately 90 hours.

Lecture: 30h Preparation of lecture: 45h Exam preparation: 15h

Literature

Selected journal articles and books.

Organizational issues

Geb. 05.20, Raum 2A-12.1, Termine werden bekannt gegeben

Seminar Management Accounting

2579909, SS 2021, 2 SWS, Language: English, Open in study portal

Seminar (S) Online

The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. You are to a large extent free to select your own topic. The seminar course is concentrated in four meetings that are spread throughout the semester.

Learning objectives:

- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources.

Workload:

• The total workload for this course is approximately 90 hours. For further information see German version.

Examination:

- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Note:

• Maximum of 16 students.

Organizational issues

Geb.05.20, 2A-12.1; Termine werden bekannt gegeben

Literature

Will be announced in the course.

Seminar in Management Accounting - Special Topics

2579919, SS 2021, 2 SWS, Language: English, Open in study portal

Seminar (S) Online

Content

The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in several meetings that are spread throughout the semester.

Learning objectives:

- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources.

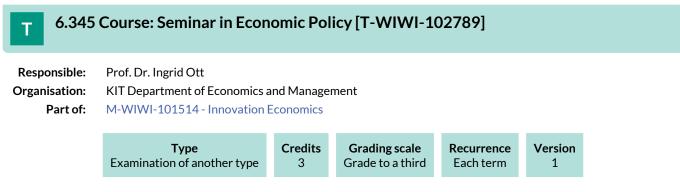
Workload:

• The total workload for this course is approximately 90 hours. For further information see German version.

Examination:

- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Note:


• Maximum of 16 students.

Organizational issues

Geb.05.20, 2A-12.1; Termine werden bekannt gegeben

Literature

Will be announced in the course.

Competence Certificate

The assessment is carried out through a term paper within the range of 12 to 15 pages, a presentation of the results of the work in a seminar meeting, and active participation in the discussions of the seminar meeting (§ 4 (2), 3 SPO).

The final grade is composed of the weighted scored examinations (Essay 50%, 40% oral presentation, active participation 10%).

Prerequisites

None

Recommendation

At least one of the lectures "Theory of Endogenous Growth" or "Innovation Theory and Policy" should be attended in advance, if possible.

6.346 Course: Seminar in Economics A (Master) [T-WIWI-103478] Т Professorenschaft des Fachbereichs Volkswirtschaftslehre **Responsible:** KIT Department of Economics and Management **Organisation:** Part of: M-WIWI-102736 - Seminar Module Economic Sciences Credits Туре **Grading scale** Recurrence Version Examination of another type 3 Grade to a third Each term 1 Events WT 20/21 **Topics in Political Economy** Seminar / 2560140 2 SWS Szech, Huber (Bachelor) WT 20/21 2560142 **Topics in Political Economy** 2 SWS Seminar / Szech, Huber (Master) WT 20/21 Seminar / 2560143 Morals & Social Behavior (Master) 2 SWS Szech, Zhao WT 20/21 2561208 Selected aspects of European 1 SWS Seminar / Szimba transport planning and -modelling WT 20/21 2561281 2 SWS Seminar / Ott Wirtschaftspolitisches Seminar ST 2021 2500004 Introduction to Statistical Machine Seminar / Schienle, Lerch 2 SWS Learning ST 2021 2521310 Advanced Topics in Econometrics 2 SWS Seminar / Schienle, Krüger, Görgen, Koster ST 2021 2560233 Seminar zur Luftverkehrspoltik Seminar / Mitusch, Wisotzky ST 2021 2560282 Wirtschaftspolitisches Seminar 2 SWS Seminar / Ott, Assistenten ST 2021 2560552 Overcoming the Corona Crisis, 2 SWS Seminar / Szech, Zhao Seminar Morals and Social Behavior (Master) ST 2021 2560555 Markets for Attention and the 2 SWS Seminar / Szech. Huber **Digital Economy Seminar on Topics** in Political Economy (Bachelor) Exams WT 20/21 7900139 Seminar in Economics (Bachelor/Master) Mitusch WT 20/21 7900140 Seminar in Economics A (Master) Digital Markets Szech WT 20/21 7900216 Seminar in Macroeconomics Brumm WT 20/21 7900255 How (not) to vote - Advantages and pitfalls of common voting methods Puppe WT 20/21 7900257 Date Mining. Seminar in Economics A (Master) Nakhaeizadeh WT 20/21 7900278 Seminar on Morals and Social Behavior (M.Sc.) Szech WT 20/21 7900281 Mitusch Organization and management of development projects WT 20/21 7900297 **Topics in Experimental Economics** Reiß WT 20/21 79sefi2 Seminar in Economics A (Master) Wigger ST 2021 7900033 Introduction to Statistical Machine Learning Schienle 7900059 ST 2021 Markets for Attention and the Digital Economy (Master) Szech ST 2021 7900065 Seminar in Macroeconomics I Brumm ST 2021 7900131 **Overcoming the Corona Crisis (Master)** Szech ST 2021 7900221 Seminar in Macroeconomics II Brumm ST 2021 7900248 Social Preferences in Behavioral Economics Szech ST 2021 79sefi2 Seminar Death, Mistake & Fraud in Science A (Master) Wigger

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Topics in Political Economy (Bachelor) 2560140, WS 20/21, 2 SWS, Language: English, Open in study portal Seminar (S) Online

Content

For Bachelor students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or <a h

Seminar Papers of 8-10 pages are to be handed in.

For bachelor students, grades will be based on the quality of presentation slides (25%) and the seminar paper (50%). Additionally each student will have to hand in one individual abstract of 75-100 words. The quality of abstracts will reflect with 25% in the final grade.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Topics in Political Economy (Master)

2560142, WS 20/21, 2 SWS, Language: English, Open in study portal

Seminar (S) Online

Content

For Master students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8-10 pages are to be handed in.

For Master students, grades will be based on the quality of presentation slides (25%) and the seminar paper (50%). Additionally each student will have to hand in two individual abstracts – one with 75-100 words and one with 150-200 words. The quality of abstracts will reflect with 25% in the final grade.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Morals & Social Behavior (Master)

2560143, WS 20/21, 2 SWS, Language: English, Open in study portal

Seminar (S) Online

For Master students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8–10 pages are to be handed in.

For Master students, grades will be based on the quality of presentation slides (25%) and the seminar paper (50%). Additionally each student will have to hand in two individual abstracts – one with 75-100 words and one with 150-200 words. The quality of abstracts will reflect with 25% in the final grade.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

V	Introduction to Statistical Machine Learning	Seminar (S)
V	2500004, SS 2021, 2 SWS, Language: German/English, Open in study portal	Online

Organizational issues

Blockveranstaltung, Termine werden bekannt gegeben

Advanced Topics in Econometrics	Seminar (S)
2521310, SS 2021, 2 SWS, Language: German/English, Open in study portal	Online

Organizational issues

Blockveranstaltung, Termine werden bekannt gegeben

V	Overcoming the Corona Crisis, Seminar Morals and Social Behavior (Master)	Seminar (S)	
	2560552, SS 2021, 2 SWS, Language: English, Open in study portal	Online	

Content

Participation will be limited to 12 students.

Organizational issues

Blockveranstaltung

Content

For Bachelor students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

The acceptance of students for the seminar is based on preferences and suitability for the topics. This includes theoretical and practical experience with Behavioral Economics as well as English skills.

Seminar Papers of 8–10 pages are to be handed in.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues Blockveranstaltung

6.347 Course: Seminar in Informatics B (Master) [T-WIWI-103480] Т

Responsible: Organisation: Part of:

Professorenschaft des Fachbereichs Informatik KIT Department of Economics and Management M-INFO-102822 - Seminar Module Informatics

		Type n of another type	Credits 3		ling scale e to a third	Recurrence Each term	Version 1		
Events									
WT 20/21	20/21 2400125 Security and Privacy Awareness		ess	2 SWS			m, Volkamer, g, Gottschalk,		

					Aldag, Gottschalk, Mayer, Mossano, Düzgün	
WT 20/21	2513312	Seminar Linked Data and the Semantic Web (Bachelor)	2 SWS	Seminar / 🖥	Färber, Käfer, Heling, Bartscherer	
WT 20/21	2513313	Seminar Linked Data and the Semantic Web (Master)2 SWSSeminar / I		Färber, Käfer, Heling, Bartscherer		
WT 20/21	2513314	Seminar Real-World Challenges in Data Science and Analytics (Bachelor)	3 SWS	Seminar / 🖥	Nickel, Weinhardt, Färber, Zehnder, Brandt	
WT 20/21	2513315	Seminar Real-World Challenges in Data Science and Analytics (Master)	3 SWS	Seminar / 🖥	Nickel, Weinhardt, Färber, Zehnder, Brandt	
WT 20/21	2513500	Seminar Cognitive Automobiles and Robots (Master)	2 SWS	Seminar / 🖥	Zöllner	
WT 20/21	2513601	Seminar Representation Learning for Knowledge Graphs (Master)	2 SWS	Seminar / 🖥	Sack, Alam, Dessi, Biswas	
ST 2021	2513211	Seminar Business Information Systems (Master)	2 SWS	Seminar / 🕃	Oberweis, Fritsch, Frister, Schreiber, Schüler, Ullrich	
ST 2021	2513309	Seminar Knowledge Discovery and Data Mining (Master)	3 SWS	Seminar / 🖥	Färber, Nguyen, Noullet, Saier, Bartscherer	
ST 2021	2513311	Seminar Data Science & Real-time Big Data Analytics (Master)	2 SWS	Seminar / 🖥	Färber, Riemer, Heyden , Käfer	
ST 2021	2513403	Seminar Emerging Trends in Internet Technologies (Master)	2 SWS	Seminar / 🖥	Lins, Sunyaev, Thiebes	
ST 2021	2513405	Seminar Emerging Trends in Digital Health (Master)	2 SWS	Seminar / 🖥	Lins, Sunyaev, Thiebes	
ST 2021	2513500	Cognitive Automobiles and Robots	2 SWS	Seminar / 🖥	Zöllner	
Exams						
WT 20/21	7500175	Seminar: Energy Informatics			Wagner	
WT 20/21	7500220	Seminar Ubiquitous Computing			Beigl	
WT 20/21	7900009	Seminar Linked Data and the Semant	ic Web (M	laster)	Sure-Vetter	
WT 20/21	7900044	Seminar Representation Learning for	Seminar Representation Learning for Knowledge Graphs (Master)			
WT 20/21	7900102	Advanced Lab Information Service Engineering (Master)			Sack	
WT 20/21	7900119	Seminar Cognitive Automobiles and Robots (Master)			Zöllner	
WT 20/21	7900129	Seminar Security and Privacy Awareness			Volkamer	
WT 20/21	7900158	Seminar Data Science & Real-time Big Data Analytics (Master)			Sure-Vetter	
WT 20/21	7900160	Seminar Real-World Challenges in Data Science and Analytics (Master)			Sure-Vetter	
ST 2021	7900088	Seminar Business Information Systems (Master)			Oberweis	
ST 2021	7900128	Seminar Emerging Trends in Internet Technologies (Master)			Sunyaev	

ST 2021	7900146	Seminar Emerging Trends in Digital Health (Master)	Sunyaev
ST 2021	7900147	Cognitive Automobiles and Robots	Zöllner
ST 2021	7900198	Seminar Data Science & Real-time Big Data Analytics (Master)	Färber
ST 2021	7900202	Seminar Knowledge Discovery and Data Mining (Master)	Sure-Vetter
ST 2021	7900246	Seminar Advanced Methods in Natural Language Processing: Metaphors	Sack

Legend: 🖥 Online, 🗱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

Placeholder for seminars offered by the Institute AIFB.

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Security and Privacy Awareness 2400125, WS 20/21, 2 SWS, Open in study portal Seminar (S) Online

Content

Within the framework of this interdisciplinary seminar, the topics security awareness and privacy awareness are to be considered from different perspectives. It deals with legal, information technology, psychological, social as well as philosophical aspects. Dates:

- Kick-Off: 02.11.20
- Final version: 07.03.21
- Presentation: 22.03.21 / maybe also 23.03.21

Topics will be assigned after the Kick-Off.

Topics:

- Development of a flyer for internet security to enhance security awareness.
- Systematic Literature Review: Enhancing Email Security Interventions Accessibility for Visually Impaired Users.
- Ethical analysis of different debriefing methods for deception studies.
- What is informational privacy and what is its worth?
- Investigation of the perception of (technical) backdoors for criminal prosecution.
- Security awareness in the context of gatekeepers: Assumptions of the users versus legal responsiblity.
- E-privacy regulations, what comes after the planet49 judgement (EuGH)?
- What is happening to the international data protection law after the Schremm III (privacy shield invalid) judgement?

More information for each topic will be updated as soon as possible.

ATTENTION: The seminar is only for MASTER students!

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php).

Seminar Linked Data and the Semantic Web (Bachelor) 2513312, WS 20/21, 2 SWS, Language: German/English, Open in study portal

Seminar (S) Online

Content

Linked Data is a way of publishing data on the web in a machine-understandable fashion. The aim of this seminar is to build applications and devise algorithms that consume, provide, or analyse Linked Data.

The Linked Data principles are a set of practices for data publishing on the web. Linked Data builds on the web architecture and uses HTTP for data access, and RDF for describing data, thus aiming towards web-scale data integration. There is a vast amount of data available published according to those principles: recently, 4.5 billion facts have been counted with information about various domains, including music, movies, geography, natural sciences. Linked Data is also used to make web-pages machine-understandable, corresponding annotations are considered by the big search engine providers. On a smaller scale, devices on the Internet of Things can also be accessed using Linked Data which makes the unified processing of device data and data from the web easy.

In this seminar, students will build prototypical applications and devise algorithms that consume, provide, or analyse Linked Data. Those applications and algorithms can also extend existing applications ranging from databases to mobile apps.

For the seminar, programming skills or knowledge about web development tools/technologies are highly recommended. Basic knowledge of RDF and SPARQL are also recommended, but may be acquired during the seminar. Students will work in groups. Seminar meetings will take place as 'Block-Seminar'.

Topics of interest include, but are not limited to:

- Travel Security
- Geo data
- Linked News
- Social Media

The exact dates and information for registration will be announced at the event page.

V	Seminar Linked Data and the Semantic Web (Master)	Seminar (S)
V	2513313, WS 20/21, 2 SWS, Language: German/English, Open in study portal	Online

Content

Linked Data is a way of publishing data on the web in a machine-understandable fashion. The aim of this seminar is to build applications and devise algorithms that consume, provide, or analyse Linked Data.

The Linked Data principles are a set of practices for data publishing on the web. Linked Data builds on the web architecture and uses HTTP for data access, and RDF for describing data, thus aiming towards web-scale data integration. There is a vast amount of data available published according to those principles: recently, 4.5 billion facts have been counted with information about various domains, including music, movies, geography, natural sciences. Linked Data is also used to make web-pages machine-understandable, corresponding annotations are considered by the big search engine providers. On a smaller scale, devices on the Internet of Things can also be accessed using Linked Data which makes the unified processing of device data and data from the web easy.

In this seminar, students will build prototypical applications and devise algorithms that consume, provide, or analyse Linked Data. Those applications and algorithms can also extend existing applications ranging from databases to mobile apps.

For the seminar, programming skills or knowledge about web development tools/technologies are highly recommended. Basic knowledge of RDF and SPARQL are also recommended, but may be acquired during the seminar. Students will work in groups. Seminar meetings will take place as 'Block-Seminar'.

Topics of interest include, but are not limited to:

- Travel Security
- Geo data
- Linked News
- Social Media

The exact dates and information for registration will be announced at the event page.

Seminar Real-World Challenges in Data Science and Analytics (Bachelor) 2513314, WS 20/21, 3 SWS, Language: German/English, Open in study portal Seminar (S) Online

In the seminar, various Real-World Challenges in Data Science and Analytics will be worked on.

During this seminar, groups of students work on a case challenge with data provided. Here, the typical process of a data science project is depicted: integration of data, analysis of these, modeling of the decisions and visualization of the results.

During the seminar, solution concepts are worked out, implemented as a software solution and presented in an intermediate and final presentation. The seminar "Real-World Challenges in Data Science and Analytics" is aimed at students in master's programs. The exact dates and information for registration will be announced at the course page.

Seminar Real-World Challenges in Data Science and Analytics (Master) Seminar (S) Online 2513315, WS 20/21, 3 SWS, Language: German/English, Open in study portal

Content

In the seminar, various Real-World Challenges in Data Science and Analytics will be worked on.

During this seminar, groups of students work on a case challenge with data provided. Here, the typical process of a data science project is depicted: integration of data, analysis of these, modeling of the decisions and visualization of the results.

During the seminar, solution concepts are worked out, implemented as a software solution and presented in an intermediate and final presentation. The seminar "Real-World Challenges in Data Science and Analytics" is aimed at students in master's programs.

The exact dates and information for registration will be announced at the course page.

Seminar Cognitive Automobiles and Robots (Master) Seminar (S) Online 2513500, WS 20/21, 2 SWS, Language: German/English, Open in study portal

Content

The seminar is intended as a theoretical supplement to lectures such as "Machine Learning". The theoretical basics will be deepened in the seminar. The aim of the seminar is that the participants work individually to analyze a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and theoretical evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:

- Students can apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles for theoretical analysis.
- Students can evaluate, document and present their concepts and results.

Recommendations:

Attendance of the lecture machine learning

Workload:

The workload of 3 credit points consists of the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Organizational issues

Anmeldung und weitere Informationen sind im Wiwi-Portal zu finden.

Registration and further information can be found in the WiWi-portal.

Seminar Representation Learning for Knowledge Graphs (Master) 2513601, WS 20/21, 2 SWS, Language: English, Open in study portal

Seminar (S) Online

Participation is restricted to 10 students max.

Contributions of the students:

Each student will be assigned at max 2 papers on the topic. Out of which the student will have to give a seminar presentation and write a seminar report paper of 15 pages explaining the methods from at least one of the two assigned papers, in their own words.

Implementation (if applicable):

If code is available from the authors, then re-implementation of it for small scale experiments using Google Colab with python.

Teaching Team:

- Dr. Mehwish Alam
- Dr. Danilo Dessi
- M. Sc. Russa Biswas

Data representation or feature representation plays a key role in the performance of machine learning algorithms. In recent years, rapid growth has been observed in Representation Learning (RL) of words and Knowledge Graphs (KG) into low dimensional vector spaces and its applications to many real-world scenarios. Word embeddings are a low dimensional vector representation of words that are capable of capturing the context of a word in a document, semantic similarity as well as its relation with other words. Similarly, KG embeddings are a low dimensional vector representation of entities and relations from a KG preserving its inherent structure and capturing the semantic similarity between the entities. Each embedding space exhibits different semantic characteristics based on the source of information, e.g. text or KGs as well as the learning of the embedding algorithms. The same algorithm, when applied to different representations of the same training data, leads to different results due to the variation in the features encoded in the respective representations. The distributed representation of text in the form of the word and document vectors as well as of the entities and relations of the KG in form of entity and relation vectors have evolved as the key elements of various natural language processing tasks such as Entity Linking, Named Entity Recognition and disambiguation, etc. Different embedding spaces are generated for textual documents of different languages, hence aligning the embedding spaces has become a stepping stone for machine translation. On the other hand, in addition to multilingualism and domain-specific information, different KGs of the same domain have structural differences, making the alignment of the KG embeddings more challenging. In order to generate coherent embedding spaces for knowledge-driven applications such as question answering, named entity disambiguation, knowledge graph completion, etc., it is necessary to align the embedding spaces generated from different sources.

In this seminar, we would like to study the different state of the art algorithms for aligning embedding space. We would focus on two types of alignment algorithms: (1) Entity - Entity alignment, and (2) Entity - Word alignment.

Organizational issues

Registration and further information can be found in the WiWi-portal.

Seminar Knowledge Discovery and Data Mining (Master) 2513309, SS 2021, 3 SWS, Language: English, Open in study portal Seminar (S) Online

Content

In this seminar different machine learning and data mining methods are implemented.

The seminar includes different methods of machine learning and data mining. Participants of the seminar should have basic knowledge of machine learning and programming skills.

Domains of interest include, but are not limited to:

- Medicine
- Social Media
- Finance Market

The exact dates and information for registration will be announced at the event page.

Organizational issues

Die Anmeldung erfolgt über das WiWi Portal https://portal.wiwi.kit.edu/.

Für weitere Fragen bezüglich des Seminar und der behandelten Themen wenden Sie sich bitte an die entsprechenden Verantwortlichen.

Literature

Detaillierte Referenzen werden zusammen mit den jeweiligen Themen angegeben. Allgemeine Hintergrundinformationen ergeben sich z.B.aus den folgenden Lehrbüchern:

- Mitchell, T.; Machine Learning
- McGraw Hill, Cook, D.J. and Holder, L.B. (Editors) Mining Graph Data, ISBN:0-471-73190-0
- Wiley, Manning, C. and Schütze, H.; Foundations of Statistical NLP, MIT Press, 1999.

Seminar Data Science & Real-time Big Data Analytics (Master) 2513311, SS 2021, 2 SWS, Language: English, Open in study portal Seminar (S) Online

Content

In this seminar, students will design applications in teams that use meaningful and creative Event Processing methods. Thereby, students have access to an existing record.

Event processing and real-time data are everywhere: financial market data, sensors, business intelligence, social media analytics, logistics. Many applications collect large volumes of data in real time and are increasingly faced with the challenge of being able to process them quickly and react promptly. The challenges of this real-time processing are currently also receiving a great deal of attention under the term "Big Data". The complex processing of real-time data requires both knowledge of methods for data analysis (data science) and their processing (real-time analytics). Seminar papers are offered on both of these areas as well as on interface topics, the input of own ideas is explicitly desired.

Further information to the practical seminar is given under the following Link: http://seminar-cep.fzi.de

Questions are answered via the e-mail address sem-ep@fzi.de.

Organizational issues

Further information as well as the registration form can be found under the following link: http://seminar-cep.fzi.de

Questions are answered via the e-mail address sem-ep@fzi.de.

Cognitive Automobiles and Robots

2513500, SS 2021, 2 SWS, Language: German/English, Open in study portal

Seminar (S) Online

Content

The seminar is intended as a theoretical supplement to lectures such as "Machine Learning". The theoretical basics will be deepened in the seminar. The aim of the seminar is that the participants work individually to analyze a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and theoretical evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:

- Students can apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles for theoretical analysis.
- Students can evaluate, document and present their concepts and results.

Recommendations:

Attendance of the lecture machine learning

Workload:

The workload of 3 credit points consists of the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Organizational issues

Anmeldung und weitere Informationen sind im Wiwi-Portal zu finden.

Registration and further information can be found in the WiWi-portal.

6.348 Course: Seminar in Information Systems (Master) [T-WIWI-109827]								
Responsil Organisati Part	on:	Studiendel KIT Depar	kan der KIT-Fakultät f kan der KIT-Fakultät f tment of Economics a 104815 - Seminar Info	ür Wirtschaft nd Manageme	tswisse ent	enschafter	ı	
		Examinati	Type ion of another type	Credits 3		ing scale to a third	Recurrence Each term	Version 1
Events								
WT 20/21	2500	0019	Digital Citizen Scie	ence		2 SWS	Seminar / 🖥	Weinhardt, Volkamer, Mayer
WT 20/21	2500	043	Collaborative Dev Conversational Ag			3 SWS	Seminar / 🖥	Mädche, Gnewuch
WT 20/21	2500)125	Current Topics in Transformation Se			3 SWS	Seminar / 🕃	Mädche
WT 20/21	2540	0473	Data Science in Se Management	rvice		2 SWS	Seminar / 🖥	Haubner, Dann, Badewitz, Stoeckel
WT 20/21	2540)475	Electronic Market	s & User beha	avior	2 SWS	Seminar / 🖥	Knierim
WT 20/21 2540477		Digital Experience	Digital Experience and Participation		2 SWS	Seminar / 🖥	Straub, Peukert, Hoffmann, Pusmaz, Willrich, Kloepper, Fegert, Greif- Winzrieth	
WT 20/21 2540478		Smart Grids and Energy Markets		ts	2 SWS	Seminar / 🖥	Staudt, Richter, Huber, vom Scheidt, Golla, Schmidt, Henni, Meinke	
WT 20/21	2540)559	Digital Service De	sign Seminar		3 SWS	Seminar	Mädche
ST 2021	2500	043	Collaborative Dev Conversational Ag			3 SWS	Seminar / 🖥	Mädche, Gnewuch
ST 2021	2500)125		Current Topics in Digital Transformation Seminar		3 SWS	Seminar / 🕃	Mädche
ST 2021	2540	0473	Business Data Ana	alytics		2 SWS	Seminar / 🖥	Dann, Stoeckel, Grote, Badewitz
ST 2021	2540)475	Electronic Market	s & User Beha	avior		Seminar / 🖥	Knierim, Dann, Jaquart
ST 2021	2540)477	Digital Experience	e & Participati	on	2 SWS	Seminar / 🖥	Peukert, Greif- Winzrieth
ST 2021	2540)478	Smart Grid Econol Markets	mics & Energy	/	2 SWS	Seminar / 🖥	Staudt, Huber, Richter, vom Scheidt, Golla, Henni, Schmidt, Meinke, Qu
ST 2021	2540)553	Interactive Analyt	ics Seminar		2 SWS	Seminar / 🖥	Mädche, Beigl, Toreini, Pescara
ST 2021	2540)557	Information Syste Design Seminar	ms and Servic	ce	3 SWS	Seminar / 🖥	Mädche
ST 2021	2540)559	Digital Service De	Digital Service Design Seminar		3 SWS	Seminar / 🖥	Mädche
ST 2021	2540)588	Economic Psychol	ogy in Action		2 SWS	Seminar / 🖥	Liu
Exams								
WT 20/21	0004	12	Seminar Business	Data Analytic	S			Weinhardt
WT 20/21	7900)125	Current Topics in	Digital Transf	ormat	ion Semina	ar	Mädche
WT 20/21	7900	0133	Digital Service De	Digital Service Design Seminar			Mädche	
WT 20/21	7900	0165	Seminar Digital Ex	minar Digital Experience and Participation				Weinhardt

WT 20/21	7900233	Information Systems and Service Design Seminar	Mädche
WT 20/21	7900327	Electronic Markets & User behavior (Seminar)	Weinhardt
WT 20/21	7900330	Seminar Digital Citizen Science	Weinhardt
ST 2021	7900093	Seminar in Business Administration A	Weinhardt
ST 2021	7900190	Current Topics in Digital Transformation Seminar	Mädche
ST 2021	7900261	Information Systems and Design (ISSD) Seminar	Mädche

Legend: 🖥 Online, 🗱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places for WIWI-seminars are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Digital Citizen Science

2500019, WS 20/21, 2 SWS, Language: German/English, Open in study portal

Seminar (S) Online

Content

Digital Citizen Science is an innovative approach to conduct field research - interactively and in the real world. Especially in times of social distancing measures essential questions about how private lives are changing are investigated. Who is experiencing more stress during HomeOffice hours? Who is flourishing while learning at home because flow is experienced more often? Which formats of digital cooperation are fostering social contacts and bonding? These and other questions that target the main topic: Well-being @Home are focused in these seminar projects.

The seminar theses are supervised by academics from multiple institutes that are working together on the topic of Digital Citizen Science arbeiten. Involved are the research groups of Prof. Mädche, Prof. Nieken, Prof. Scheibehenne, Prof. Szech, Prof. Volkamer, Prof. Weinhardt and Prof. Woll.

Collaborative Development of Conversational Agents 2500043, WS 20/21, 3 SWS, Language: English, Open in study portal

Seminar (S) Online

This course focuses on the design, development, deployment, and evaluation of conversational agents (e.g., chatbots or voice assistants) for a given problem domain (e.g., customer service, team collaboration). The aim of the course is to introduce conceptual and technical foundations of conversational agents, relevant theories of human-computer interaction, and design guidelines for different classes of conversational agents. In addition, the course will introduce the human-centered design approach adapted to the design of conversational agents, including several qualitative and quantitative evaluation approaches.

The entire course is held virtually with no physical meetings, providing a first experience for future workplace scenarios. The course is a joint offering together with Saarland University (Prof. Stefan Morana) and Technische Universität Dresden (Prof. Benedikt Brendel). Students will work collaboratively in virtual teams with students from the other universities (i.e., one student per university in one team). Each student team will iteratively design, develop, and evaluate a conversational agent using contemporary technology tools (e.g., Google Dialogflow, Microsoft Bot Framework, Rasa). The teams document their activities and results in a project report. The project report as well as the conversational agent prototype are the basis for the grading of the course.

The entire course is limited to 15 participants (5 per university) and requires a short registration. More details will be made available on our website.

After completing this course, the course participants will be able to:

- explain conceptual and technical foundations of conversational agents
- perform the human-centered design approach to design, develop, and evaluate a conversational agent
- develop conversational agents using state-of-the-art tools and frameworks
- apply qualitative and quantitative methods to evaluate conversational agent prototypes

Requirements

- Programming skills are beneficial
- Experience or general interest in human-computer interaction
- English communication skills

Literature

Relevant literature will be made available in the seminar.

Data Science in Service Management

2540473, WS 20/21, 2 SWS, Language: German/English, Open in study portal

Seminar (S) Online

Content

wird auf deutsch und englisch gehalten

Organizational issues

Blockveranstaltung, siehe WWW

Digital Service Design Seminar

2540559, WS 20/21, 3 SWS, Open in study portal

Collaborative Development of Conversational Agents 2500043, SS 2021, 3 SWS, Language: English, Open in study portal Seminar (S) Online

Seminar (S)

This course focuses on the design, development, deployment, and evaluation of conversational agents (e.g., chatbots or voice assistants) for a given problem domain (e.g., customer service, team collaboration). The aim of the course is to introduce conceptual and technical foundations of conversational agents, relevant theories of human-computer interaction, and design guidelines for different classes of conversational agents. In addition, the course will introduce the human-centered design approach adapted to the design of conversational agents, including several qualitative and quantitative evaluation approaches.

The entire course is held virtually with no physical meetings, providing a first experience for future workplace scenarios. The course is a joint offering together with Saarland University (Prof. Stefan Morana) and Technische Universität Dresden (Prof. Benedikt Brendel). Students will work collaboratively in virtual teams with students from the other universities (i.e., one student per university in one team). Each student team will iteratively design, develop, and evaluate a conversational agent using contemporary technology tools (e.g., Google Dialogflow, Microsoft Bot Framework, Rasa). The teams document their activities and results in a project report. The project report as well as the conversational agent prototype are the basis for the grading of the course.

The entire course is limited to 15 participants (5 per university) and requires a short registration. More details will be made available on our website.

After completing this course, the course participants will be able to:

- explain conceptual and technical foundations of conversational agents
- perform the human-centered design approach to design, develop, and evaluate a conversational agent
- develop conversational agents using state-of-the-art tools and frameworks
- apply qualitative and quantitative methods to evaluate conversational agent prototypes

Requirements

- Programming skills are beneficial
- Experience or general interest in human-computer interaction
- English communication skills

Literature

Relevant literature will be made available in the seminar.

Information Systems and Service Design Seminar 2540557, SS 2021, 3 SWS, Language: English, Open in study portal

Seminar (S) Online

With this seminar, we aim to provide students with the possibility to independently work on state-of-the-art research topics in addition to the knowledge gained in the lectures of the research group ISSD (Prof. Mädche). The research group "Information Systems & Service Design" (ISSD) headed by Prof. Mädche focuses in research, education, and innovation on designing interactive intelligent systems. It is positioned at the intersection of Information Systems and Human-Computer Interaction (HCI).

In the seminar, participants will get deeper insights in a contemporary research topic in the field of information systems, specifically interactive intelligent systems.

The actual seminar topics will be derived from current research activities of the research group. Our research assistants offer a rich set of topics from our research clusters (digital experience and participation, intelligent enterprise systems, or digital services design & innovation). Students can select among these topics individually depending on their personal interests. The seminar is carried out in the form of a literature-based thesis project. In the seminar, students will acquire the important methodological skills of running a systematic literature review.

Learning Objectives

- focus on a contemporary topic at the intersection of Information Systems and Human-Computer Interaction (HCI), specifically interactive intelligent systems
- carry out a structured literature search for a given topic
- aggregate the collected information in a suitable way to present and extract knowledge
- write a seminar thesis following academic writing standards
- deliver a presentation in a scientific context in front of an auditorium

Prerequisites

No specific prerequisites are required for the seminar.

Literature

Further literature will be made available in the seminar.

Organizational issues

Termine werden bekannt gegeben

Digital Service Design Seminar

2540559, SS 2021, 3 SWS, Language: English, Open in study portal

Seminar (S) Online

Content Description

In this seminar, a team of students addresses a real-world design challenge of an IISM cooperation partner. Students learn and apply design methods, techniques, and tools to explore the problem and deliver a solution in the form of an innovative prototype

Learningobjectives

The students

- explore a real-world digital service design challenge
- understand the human-centered design process and apply selected design techniques & tools
- deliver a digital service prototype as a potential solution for the challenge

Prerequisites

No specific prerequisites are required for the seminar

Literature

Further literature will be made available in the seminar.

Organizational issues

Termine werden bekannt gegeben

Economic Psychology in Action

2540588, SS 2021, 2 SWS, Language: English, Open in study portal

Seminar (S) Online

Content Description

This blocked event contains 3 stages.

In Stage 1, students meet online for one day and experience recent economic psychology research as participants. The research topics will mainly consist of novel economic games with certain level of strategic depth (i.e., we will not play simple games like rock paper scissors, nor we will play games that many people are familiar with like the prisoner's dilemma).

In Stage 2, students will receive the data from the games they played in Stage 1 along with a few journal articles assigned by the instructor on related topics. Based on reading, they choose one of the datasets from Stage 1 to write up a short report.

In Stage 3, students will try to design and conduct a study on a related topic themselves based on what they have learned in the previous stages. They will collect their own data and write a research report. The nature of this project is to be determined together by the students and instructor. It would either be ideas generated by the students themselves, or something assigned by the instructor.

English will be the language used in all discussions, course materials, and assessments.

Competence Certificate

The assessment is based on the short report in Stage 2 and the research report in Stage 3.

Workload

Students are expected to spend a total of 90 hours (30 hours per ECTS), including meeting and assignments, on this seminar.

Organizational issues

Blockveranstaltung, Temrine werden bekanntgegeben

Part of: M-WIWI-102736 - Seminar Module Economic Sciences

Туре	Credits	Grading scale	Recurrence	Version	
Examination of another type	3	Grade to a third	Each term	1	

Events					
WT 20/21	2550131	Seminar on Methodical Foundations of Operations Research	2 SWS	Seminar / 🖥	Stein, Neumann
WT 20/21	2550132	Seminar zur Mathematischen Optimierung (MA)	2 SWS	Seminar	Stein, Neumann
WT 20/21	2550473	Seminar on Power Systems Optimization (Master)	2 SWS	Seminar / 🖥	Rebennack, Warwicker
WT 20/21	2550491	Seminar: Modern OR and Innovative Logistics	2 SWS	Seminar / 🖥	Nickel, Mitarbeiter
ST 2021	2550132	Seminar zur Mathematischen Optimierung (MA)	2 SWS	Seminar /	Stein, Beck, Neumann, Schwarze
ST 2021	2550473	Seminar on Power Systems Optimization (Master)	2 SWS	Seminar / 🖥	Rebennack, Warwicker, Sinske
ST 2021	2550491	Seminar: Modern OR and Innovative Logistics	2 SWS	Seminar / 🖥	Nickel, Mitarbeiter
Exams	•	-			
WT 20/21	7900011_WS2021	Seminar in Operations Research	B (Bachelor)		Stein
WT 20/21	7900012_WS2021	Seminar in Operations Research	A (Master)		Stein
WT 20/21	7900108	Seminar: Modern OR and Innovative Logistics		Nickel	
WT 20/21	7900282	Digitization in the Steel Industry		Nickel	
WT 20/21	7900286	Digitization in the Steel Industry	Digitization in the Steel Industry		Nickel
WT 20/21	7900314	Seminar in Operations Research	A (Master)		Rebennack

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

V	Seminar on Methodical Foundations of Operations Research	Seminar (S)
V	2550131, WS 20/21, 2 SWS, Language: German, Open in study portal	Online

Content

The seminar aims at describing, evaluating, and discussing recent as well as classical topics in continuous optimization. The focus is on the treatment of optimization models and algorithms, also with respect to their practical application.

Bachelor studenst are introduced to the style of scientific work. By focussed treatment of a scientific topic they deal with the basics of scientific investigation and reasoning.

For further development of a scientific work style, master students are particularly expected to critically question the seminar topics.

With regard to the oral presentations the students become acquainted with presentation techniques and basics of scientifc reasoning. Also rethoric abilities may be improved.

Remarks:

Attendance at all oral presentations is compulsory.

Preferably at least one module offered by the Institute of Operations Research should have been chosen before attending this seminar.

Assessment:

The assessment is composed of a 15-20 page paper as well as a 40-60 minute oral presentation according to §4(2), 3 of the examination regulation. The grade is composed of the equally weighted assessments of the paper and the oral presentation.

The seminar is appropriate for bachelor as well as for master students. Their differentiation results from different assessment criteria for the seminar paper and the oral presentation.

Workload:

The total workload for this course is approximately 90 hours. For further information see German version.

Organizational issues

Blockveranstaltung, Termin n. V.

Literature

Die Literaur und die relevanten Quellen werden gegen Ende des vorausgehenden Semesters im Wiwi-Portal und in einer Seminarvorbesprechung bekannt gegeben.

References and relevant sources are announced at the end of the preceding semester in the Wiwi-Portal and in a prepatory meeting.

Seminar: Modern OR and Innovative Logistics 2550491, WS 20/21, 2 SWS, Language: German, Open in study portal

Seminar (S) Online

Content

The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization. The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management). The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic. Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

Organizational issues

wird auf der Homepage bekannt gegeben

Literature

Die Literatur und die relevanten Quellen werden zu Beginn des Seminars bekannt gegeben.

Seminar: Modern OR and Innovative Logistics

2550491, SS 2021, 2 SWS, Language: German, Open in study portal

Seminar (S) Online

The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization. The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management). The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic. Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

The topics of the seminar will be announced at the beginning of the term in a preliminary meeting. Attendance is compulsory for the preliminary meeting as well for all seminar presentations.

Exam:

The assessment consists of a written seminar thesis of 20-25 pages and a presentation of 35-40 minutes (according to §4(2), 3 of the examination regulation).

The final mark for the seminar consists of the seminar thesis, the seminar presentation, the handout, and if applicable further material such as programming code.

The seminar can be attended both by Bachelor and Master students. A differentiation will be achieved by different valuation standards for the seminar thesis and presentation.

Requirements:

If possible, at least one module of the institute should be taken before attending the seminar.

Objectives:

The student

- illustrates and evaluates classic and current research questions in discrete optimization,
- applies optimization models and algorithms in discrete optimization, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management),
- successfully gets in touch with scientific working by an in-depth working on a special scientific topic which makes the student familiar with scientific literature research and argumentation methods,
- acquires good rhetorical and presentation skills.

As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic.

Organizational issues

wird auf der Homepage dol.ior.kit.edu bzw. auf dem WiWi-Portal bekannt gegeben

Literature

Die Literatur und die relevanten Quellen werden zu Beginn des Seminars bekannt gegeben.

Schienle

6.350 Course: Seminar in Statistics A (Master) [T-WIWI-103483] **Responsible:** Prof. Dr. Oliver Grothe Prof. Dr. Melanie Schienle KIT Department of Economics and Management Organisation: Part of: M-WIWI-102736 - Seminar Module Economic Sciences Credits **Grading scale** Recurrence Version Туре Examination of another type 3 Grade to a third Each term 1 **Events** WT 20/21 2521310 Seminar / **Topics in Econometrics** 2 SWS Schienle, Chen, Görgen, Krüger, Buse ST 2021 Seminar / 2500004 Introduction to Statistical Machine 2 SWS Schienle, Lerch Learning ST 2021 Seminar / 2521310 Advanced Topics in Econometrics 2 SWS Schienle, Krüger, Görgen, Koster Exams WT 20/21 7900254 Topics in Econometrics. Seminar in Economics Schienle

Legend: 🖥 Online, 🤔 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

7900033

Competence Certificate

ST 2021

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods

Introduction to Statistical Machine Learning

• Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Topics in Econometrics

2521310, WS 20/21, 2 SWS, Language: German, Open in study portal

Seminar (S) Online

Seminar (S) Online

Organizational issues

Blockveranstaltung, Termine werden auf Homepage und über Ilias bekannt gegeben

V	
---	--

Organizational issues

Blockveranstaltung, Termine werden bekannt gegeben

V	Advanced Topics in Econometrics	Seminar (S)
	2521310, SS 2021, 2 SWS, Language: German/English, Open in study portal	Online

Organizational issues

Blockveranstaltung, Termine werden bekannt gegeben

Т

6.351 Course: Seminar Informatics A [T-INFO-104336]

Responsible:Prof. Dr. Sebastian AbeckOrganisation:KIT Department of InformaticsPart of:M-INFO-102822 - Seminar Module Informatics

Type Examination of another type
--

Events					
WT 20/21	2400072	Seminar: Service-oriented Architectures		Seminar /	Abeck, Schneider
WT 20/21	2400078	Seminar: Neuronale Netze und künstliche Intelligenz		Seminar /	Waibel, Stüker, Asfour, HA
WT 20/21	24844	Seminar: Ubiquitous Systems	2 SWS	Seminar / 🖥	Beigl, Pescara
ST 2021	2400011	Hot Topics in Bioinformatics	2 SWS	Seminar /	Stamatakis
ST 2021	2400072	Seminar: Service-oriented Architectures		Seminar /	Abeck, Schneider
ST 2021	2400144	Can Statistics Prove Cause and Effect?	2 SWS	Seminar /	Janzing
ST 2021	24344	Advanced Methods of Information Fusion	2 SWS	Seminar /	Hanebeck, Radtke
Exams	•	·	•	•	
WT 20/21	7500021	Advanced Methods of Information F	usion		Hanebeck
WT 20/21	7500122	CES - Seminar: Machine Learning			Henkel
WT 20/21	7500175	Seminar: Energy Informatics			Wagner
WT 20/21	7500220	Seminar Ubiquitous Computing			Beigl
WT 20/21	7500257	Seminar Big Data Tools			Streit
WT 20/21	7500267	Seminar Advanced Topics in Machin	e Translati	ion	Waibel
WT 20/21	75104740	Seminar: Service-Oriented Architect	tures		Abeck
ST 2021	7500013	Advanced Methods of Information F	usion		Hanebeck, Noack
ST 2021	7500014	Seminar: Hot Topics in Bioinformation	Seminar: Hot Topics in Bioinformatics		
ST 2021	7500148	Proseminar: Practical Seminar: Inter	active Ana	alytics	Beigl, Mädche
ST 2021	7500162	Seminar: Ubiquitous Systems			Beigl, Riedel
ST 2021	75104740	Seminar: Service-Oriented Architect	tures		Abeck

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Seminar: Neuronale Netze und künstliche Intelligenz

Seminar (S) Online

2400078, WS 20/21, SWS, Language: German/English, Open in study portal

Content

In many tasks that appear natural to us, the fastest computers are unable to match the performance of the human brain. Neural networks attempt to simulate the parallel and distributed architecture of the brain in order to master these skills with learning algorithms. In this context, focus is being put on neural network approaches to computer vision and speech recognition, robotics and other areas.

In this seminar students will acquaint themselves with literature from provided topics and will present their results as a talk supported by slides to the other participants of the seminar.

Recommendations:

- Finishing the module "Kognitive Systeme" prior to the seminar is recommended.
- Attending the lecture "Deep Learning und Neuronale Netze" prior to the seminar is of advantage

Organizational issues

Die Anmeldung zum Seminar erfolgt über die Anmeldung zur Veranstaltung im Campus-System.

Hot Topics in Bioinformatics

2400011, SS 2021, 2 SWS, Language: English, Open in study portal

Seminar (S) Online

Content

Prerequisites: CS Master's level seminar. Participants must have attended and passed the course on "Introduction to Bioinformatics for Computer Scientists" in one of the preceding winter terms.

Task: You will need to select papers to present, give a presentation and write a report.

This main seminar allows students to understand and present the contents of current papers in Bioinformatics such as published for instance in the journals *Bioinformatics*, *BMC Bioinformatics*, *Journal of Computational Biology*etc. or at conferences such as *ISMB* or *RECOMB*.

We will provide a list of interesting papers, but students can also propose papers they are interested in. Students may also chose to cover broader topics of more general interest such as multiple sequence alignment, Bayesian phylogenetic inference, read assembly etc.

Each student will be assigned a lab member for help with understanding the article and preparing the slides as well as the report.

Students should give a 35 minute presentation on their topic of choice and write a report (Seminararbeit) comprising 8 pages.

Goals: Participants are able to understand, critically assess, and compare current research papers in Bioinformatics. They are able to present algorithms and models from current research papers in oral and written form at a level that corresponds to that of scientific publications and conference presentations. Participants are able to suggest extension to current methods. **Credits:** 3 ECTS

Organizational issues

IMPORTANT: Register for the seminar mailing list by sending an email to Alexandros.Stamatakis@h-its.org.

All information on the seminar is provided at: Seminar page Information about how we will start virtually is also provided there. We will start in the first week of the summer term. For all further information, students are requested to regularly read their emails.

Advanced Methods of Information Fusion

24344, SS 2021, 2 SWS, Language: German/English, Open in study portal

Seminar (S) Online

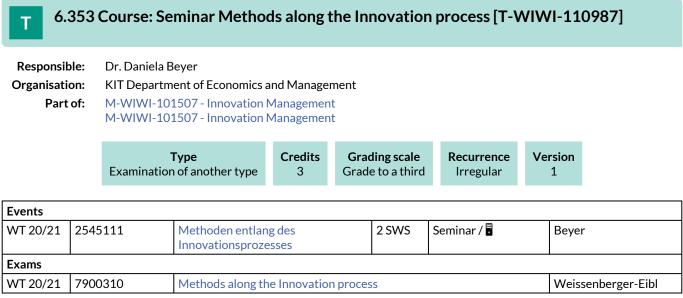
Content

The growing spread and performance of modern information and communication technologies produces an ever-increasing amount data .It is one of the central challenges of our time to extract meaningful information from these data sets. The approach to address these issues, often called data science, combines strategies and methods from the fields of machine learning, mathematics, state estimation, visualization and pattern recognition. During this seminar, the students will familiarize themselves with concepts and methods particularly focusing on estimation theory and its application

The seminar targets master students in computer science and bachelor students in Information engineering and management.

Т

6.352 Course: Seminar Informatics Master [T-INFO-111205]


Organisation: KIT Department of Informatics

Part of: M-INFO-102822 - Seminar Module Informatics

Туре	Credits	Grading scale	Version
Examination of another type	3	Grade to a third	1

Events					
WT 20/21	2400060	Data in Software-Intensive Technical Systems – Modeling – Analysis – Protection	2 SWS	Seminar / 🖥	Reussner, Raabe, Müller-Quade
ST 2021	2400033	Research Focus Class: Blockchain & Payment Channel Networks Seminar	2 SWS	Seminar / 🖥	Hartenstein, Grundmann
ST 2021	2400084	Seminar: Robot Reinforcement Learning	2 SWS	Seminar / 🖥	Neumann
ST 2021	5012005	Language Models		Advanced Graduate Seminar (/ 🖥	Seidel-Saul, Betz, Koziolek
Exams					
WT 20/21	7500232	Seminar Data in Software-Intensive Analysis – Protection	Seminar Data in Software-Intensive Technical Systems – Modeling – Analysis – Protection		
ST 2021	7400490	Language Models	Language Models		Betz, Seidel-Saul, Gutmann, Koziolek

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment.

Recommendation

Prior attendance of the course Innovation Management [2545015] is recommended.

ST 2021

Dreier, Boehm,

Melullis, Matz

6.354 Course: Seminar: Governance, Risk & Compliance [T-INFO-102047] Т Prof. Dr. Thomas Dreier **Responsible:** Organisation: **KIT** Department of Informatics Part of: M-INFO-101242 - Governance, Risk & Compliance Credits **Grading scale** Version Туре Examination of another type 3 Grade to a third 1 **Events** ST 2021 Herzig 2400041 Governance, Risk & Compliance 2 SWS Seminar / Exams

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

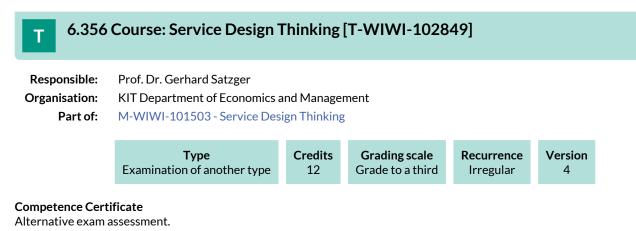
Seminar: Legal Studies I

7500140

6.355 Course: Seminar: Legal Studies I [T-INFO-101997] Т **Responsible:** Prof. Dr. Thomas Dreier Organisation: **KIT** Department of Informatics Part of: M-INFO-101218 - Seminar Module Law Credits Туре **Grading scale** Recurrence Version Examination of another type 3 Grade to a third Each term 1 **Events** WT 20/21 Seminar / 2400060 Data in Software-Intensive 2 SWS Reussner, Raabe, Technical Systems - Modeling -Müller-Quade Analysis - Protection WT 20/21 2400133 Hate speech & Fake news - Das 2 SWS Seminar / Eichenhofer öffentliche Recht in der "postrationalen Konstellation"? WT 20/21 2400240 Grundfragen Ethik und IT 2 SWS Seminar / Dreier IT-Sicherheit und Recht WT 20/21 24389 2 SWS Seminar / Schallbruch WT 20/21 Seminar / 2513214 Seminar Information security and 2 SWS Oberweis, Volkamer, data protection (Bachelor) Raabe, Alpers, Düzgün, Schiefer, Wagner Seminar / 🖥 ST 2021 2400041 Governance, Risk & Compliance 2 SWS Herzig ST 2021 Seminar / 2400061 Internet und Gesellschaft -2 SWS Bless, Boehm, Hartenstein, Mädche, gesellschaftliche Werte und technische Umsetzung Sunyaev, Zitterbart, Volkamer Eichenhofer ST 2021 "Die Corona-Krise aus der Sicht des 2 SWS 2400065 Seminar / Verfassungsrechts" Seminar / ST 2021 2400082 "Verfassungsrechtliche Fragen 2 SWS Eichenhofer staatlicher Öffentlichkeitsarbeit" ST 2021 Aktuelle Probleme des Seminar / 2400127 Eichenhofer Datenschutzrechts ST 2021 2400153 Technische Aspekte der DSGVO 2 SWS Seminar / Boehm, Dimitrova und deren Umsetzung in der Praxis ST 2021 24820 2 SWS **Current Issues in Patent Law** Seminar / Melullis Exams WT 20/21 7500035 Seminar: Legal Studies II Eichenhofer WT 20/21 7500182 Seminar: Legal Studies II Dreier, Boehm, Raabe WT 20/21 7500232 Seminar Data in Software-Intensive Technical Systems - Modeling -Reussner Analysis - Protection ST 2021 7500140 Seminar: Legal Studies I Dreier, Boehm, Melullis, Matz ST 2021 7500159 Seminar: Legal Studies I Eichenhofer

Legend: Doline, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:


Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung 2400061, SS 2021, 2 SWS, Open in study portal

Seminar (S) Online

Content

• Registration via https://portal.wiwi.kit.edu/ys/4516

Organizational issues nach Vereinbarung

Prerequisites

None

Recommendation

This course is held in English - proficiency in writing and communication is required.

Our past students recommend to take this course at the beginning of the masters program.

Annotation

Due to practical project work as a component of the program, access is limited.

The module (as well as the module component) spans two semesters. It starts in September every year and runs until end of June in the subsequent year. Entering the program is only possible at its beginning - after prior application in May/June.

For more information on the application process and the program itself are provided in the module component description and the program's website (http://sdt-karlsruhe.de).

Furthermore, the KSRI conducts an information event for applicants every year in May.

This module is part of the KSRI Teaching Program "Digital Service Systems". For more information see the KSRI Teaching website: www.ksri.kit.edu/teaching.

6.357 Course: Service Innovation [T-WIWI-102641] **Responsible:** Prof. Dr. Gerhard Satzger Organisation: KIT Department of Economics and Management Part of: M-WIWI-101410 - Business & Service Engineering M-WIWI-101448 - Service Management M-WIWI-102806 - Service Innovation, Design & Engineering Credits **Grading scale** Recurrence Version Type Written examination 4,5 Grade to a third Each summer term 1 **Events** ST 2021 2595468 Service Innovation 2 SWS Lecture / Satzger Exams WT 20/21 7900208 Service Innovation (Nachklausur am 03.12.2020) Satzger WT 20/21 7900334 Satzger Service Innovation Legend: Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled **Competence Certificate**

The assessment consists of a written exam (60 min.). A bonus can be acquired through successful participation in the exercise. If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade by one grade (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites None

Recommendation

Below you will find excerpts from events related to this course:

Service Innovation

2595468, SS 2021, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

Continuous innovation is a prerequisite for firms to stay competitive. While innovation in manufacturing or agriculture can build on a considerable body of research, experience and best practices, innovation in services has not reached the same level of maturity.

This course takes a close look at the topic of service innovation. We will lay the foundations with an initial overview of service innovation including the basic concepts, challenges and innovation processes. We will compare product and service innovation and understand how innovation diffusion works.

The second part focuses on applicable methods and tools for service innovation: we will cover possible sources of innovations, ways to identify opportunities for innovations and the potential of service innovations built on data. For example, open and closed innovation approaches will be contrasted, the benefits of leveraging user communities to drive innovation will be explored and the human-centric innovation approach (Service) Design Thinking will be introduced. We will also look into the opportunities that technology offers for service innovation.

The last part of the lecture covers the management of service innovation and insights from practice. You will understand obstacles and enablers, and learn how to manage, incentivize and foster service innovation.

6 COURSES

Literature

- Cardoso, J., Fromm, H., Nickel, S., Satzger, G., Studer, R., & Weinhardt, C. (Eds.) (2015). Fundamentals of service systems (Vol. 12). Heidelberg: Springer.
- Lusch, R. F., & Nambisan, S. (2015). Service innovation: A service-dominant logic perspective. MIS quarterly, 39(1), 155-175.
- Christensen, Clayton M. (2013). The Innovator's Dilemma when new technologies cause great firms to fail. Boston, Massachusetts: Harvard Business Review Press.
- Rogers, S. (2003). Diffusion of Innovations. 5. ed. New York: Free Press.
- Chesbrough, H. W. (2011). Open services innovation rethinking your business to grow and compete in a new era. 1. ed. San Francisco: Jossey-Bass.
- Chesbrough, H. (2011). Open services innovation: Rethinking your business to grow and compete in a new era. John Wiley & Sons.
- Uebernickel, F., Brenner, W., Pukall, B., Naef, T., & Schindlholzer, B. (2015). Design Thinking: Das Handbuch. Frankfurt am Main: Frankfurter Allgemeine Buch.
- Runco, M.A. (2014). Creativity: Theories and Themes: Research, Development, and Practice (2nd ed.). Amsterdam: Academic Press.

6.358 Course: Signals and Codes [T-INFO-101360] Т **Responsible:** Prof. Dr. Jörn Müller-Quade Organisation: KIT Department of Informatics Part of: M-INFO-100823 - Signals and Codes Credits Туре **Grading scale** Recurrence Version Grade to a third Oral examination 3 Irregular 1 **Events** WT 20/21 24137 2 SWS Lecture / Signals and Codes Geiselmann, Müller-Quade Exams WT 20/21 7500090 Geiselmann, Müller-Signals and Codes Quade Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

V	Signals and Codes	Lecture (V)
	24137, WS 20/21, 2 SWS, Language: German, Open in study portal	Online

Content

In this lecture, bounds for codes (Hamming, Gilbert-Varshamov, Singleton) are presented. Coding and decoding for classical algebraic codes (linear, cyclic, Reed Solomon-, Goppa- und Reed Muller-codes) will be presented as well as concatanated codes.

Literature

Shu Lin, Daniel Costello, 'Error Control Coding', 2nd Ed., Pearson Prentice Hall, 2004 Todd Moon, 'Error Correction Coding', Wiley, 2005 Weitere Literatur wird in der Vorlesung bekannt gegeben.

Weiterführende Literatur

Wird in der Vorlesung bekannt gegeben.

6.359 Course: Simulation Game in Energy Economics [T-WIWI-108016] **Responsible:** Dr. Massimo Genoese **Organisation:** KIT Department of Economics and Management Part of: M-WIWI-101451 - Energy Economics and Energy Markets Type Credits **Grading scale** Recurrence Version Examination of another type 3 Grade to a third Each summer term 1 **Events** ST 2021 2581025 3 SWS Lecture / Practice (/ Genoese, Zimmermann Simulation Game in Energy • **Economics** Legend: Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled **Competence Certificate** Examination as written assignment and oral presentation (§4 (2), 1 SPO).

Prerequisites

None

Recommendation

Visiting the course "Introduction to Energy Economics"

Annotation

See German version.

Below you will find excerpts from events related to this course:

Simulation Game in Energy Economics

2581025, SS 2021, 3 SWS, Language: German, Open in study portal

Content

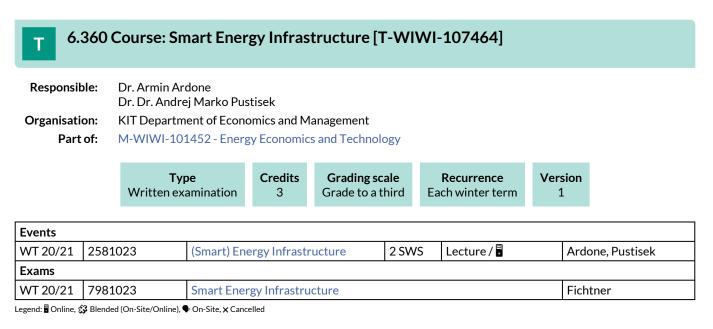
- Introduction
- Agents and market places in the electricity industry
- Selected planning tasks of energy service companies
- Methods of modelling in the energy sector
- Agent-based simulation: The PowerACE model
- Simulation game: Simulation in energy economics (electricity and emission trading, investment decisions)

The lecture is structured in a theoretical and a practical part. In the theoretical part, the students are taught the basics to carry out simulations themselves in the practical part which comprises amongst others the simulation of the power exchange. The participants of the simulation game take a role as a power trader in the power market. Based on various sources of information (e.g. prognosis of power prices, available power plants, fuel prices), they can launch bids in the power exchange.

Assessment: presentation and written summary

Prerequisites: Basics in Energy economics ad markets are advantageous.

Organizational issues


CIP-Pool West, Raum 102, Geb. 06.41 - siehe Institutsaushang

Literature

Weiterführende Literatur:

Möst, D. und Genoese, M. (2009): Market power in the German wholesale electricity market. The Journal of Energy Markets (47–74). Volume 2/Number 2, Summer 2009

Lecture / Practice (VÜ) Online

Competence Certificate

The assessment consists of a written exam (60 minutes) (following \$4(2) of the examination regulation). The exam takesplace in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following \$4(2), 3 of the examination regulation).

Prerequisites

None.

Annotation

New course starting winter term 2017/2018.

Below you will find excerpts from events related to this course:

(Smart) Energy Infrastructure

2581023, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

- Basic terms and concepts
- Meaning of infrastructure
- Excursus: regulation of infrastructure
- Natural gas transportation
- Natural gas storage
- Electricity transmission
- (Overview) Crude oil and oil product transportation

6.361 Course: Smart Grid Applications [T-WIWI-107504] Т **Responsible:** Prof. Dr. Christof Weinhardt Organisation: KIT Department of Economics and Management Part of: M-WIWI-101446 - Market Engineering M-WIWI-103720 - eEnergy: Markets, Services and Systems Credits **Grading scale** Recurrence Version Type Written examination 4,5 Grade to a third Each winter term 2 **Events** WT 20/21 2540452 Smart Grid Applications 2 SWS Lecture / Staudt

				· —	
WT 20/21	2540453	Übung zu Smart Grid Applications	1 SWS	Practice /	Staudt
Exams					
WT 20/21	7900235	Smart Grid Applications			Weinhardt
WT 20/21	7900308	Smart Grid Applications			Weinhardt

Legend: 🖥 Online, 🚯 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulations). By successful completion of the exercises (§4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites

None

Recommendation

None

Annotation

The lecture will be read for the first time in winter term 2018/19.

6.362 Course: Social Choice Theory [T-WIWI-102859]

Responsible:	Prof. Dr. Clemens Puppe
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101500 - Microeconomic Theory
	M-WIWI-101504 - Collective Decision Making

Type	Credits	Grading scale	Recurrence	Version
Examination of another type	4,5	Grade to a third	Each summer term	2

Events					
ST 2021	2520537	Social Choice Theory	2 SWS	Lecture / 🖥	Puppe, Kretz
ST 2021	2520539	Übung zu Social Choice Theory	1 SWS	Practice /	Kretz, Puppe

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of an alternative exam assessment (open book exam). The exam takes place in every summer semester.

Prerequisites None

Below you will find excerpts from events related to this course:

Social Choice Theory

2520537, SS 2021, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

How should (political) candidates be elected? What are good ways of merging individual judgments into collective judgments? Social Choice Theory is the systematic study and comparison of how groups and societies can come to collective decisions.

The course offers a rigorous and comprehensive treatment of judgment and preference aggregation as well as voting theory. It is divided into two parts. The first part deals with (general binary) aggregation theory and builds towards a general impossibility result that has the famous Arrow theorem as a corollary. The second part treats voting theory. Among other things, it includes prooving the Gibbard-Satterthwaite theorem.

Literature

Main texts:

- Hervé Moulin: Axioms of Cooperative Decision Making, Cambridge University Press, 1988
- Christian List and Clemens Puppe: Judgement Aggregation. A survey, in: Handbook of rational & social choice,
 D Anand D Dattanaily, C Durang (Eds.), Outford University Dates 2000.
- P.Anand, P.Pattanaik, C.Puppe (Eds.), Oxford University Press 2009.

Secondary texts:

- Amartya Sen: Collective Choice and Social Welfare, Holden-Day, 1970
- Wulf Gaertner: A Primer in Social Choice Theory, revised edition, Oxford University Press, 2009
- Wulf Gaertner: Domain Conditions in Social Choice Theory, Oxford University Press, 2001

6.363 Course: Sociotechnical Information Systems Development [T-WIWI-109249]

Responsible:Prof. Dr. Ali SunyaevOrganisation:KIT Department of Economics and ManagementPart of:M-WIWI-104403 - Critical Digital Infrastructures

	Examina	Type ation of another type	Credits 4,5	Grading sca Grade to a th			ersion 2
Events							
WT 20/21	2512400		Practical Course Sociotechnical Information Systems Development (Bachelor)			ourse / 🖥	Sunyaev, Pand
WT 20/21	2512401	Practical Courses Information Syste (Master)			6 Practical co	ourse / 🖥	Sunyaev, Pand
ST 2021	2512400		Advanced Lab Development of Sociotechnical Information Systems (Bachelor)			ourse / 🖥	Sunyaev, Pand
ST 2021	2512401		Development of Sociotechnical Information Systems (Master)			ourse / 🖥	Sunyaev, Pand
Exams							
WT 20/21	7900115	Advanced Lab Development of Sociotechnical Information Systems (Bachelor)					Sunyaev
WT 20/21	7900143	Advanced Lab Development of Sociotechnical Information Systems (Master)					Sunyaev
ST 2021	7900173	Advanced Lab Development of Sociotechnical Information Systems (Master)					Sunyaev

Competence Certificate

The alternative exam assessment consists of an implementation and a final thesis documenting the development and use of the application.

Prerequisites

None.

Below you will find excerpts from events related to this course:

Practical Course Sociotechnical Information Systems Development (Bachelor)Practical course (P)2512400, WS 20/21, 3 SWS, Language: German/English, Open in study portalOnline

The aim of this course is to provide a practical introduction into developing socio-technical information systems, such as web platforms, mobile apps, or desktop applications. Course participants will create (individually or in groups) software solutions for specific problems from various practical domains. The course tasks comprise requirements assessment, system design, and software implementation. Furthermore, course participants will gain insights into software quality assurance methods and software documentation.

Learning objectives:

- Independent and self-organized realization of a software development project
- Evaluation and selection of suitable development tools and methods
- Application of modern software development methods
- Planning and execution of different development tasks: requirements assessment, system design, implementation, and quality assurance
- Project documentation
- Presentation of project results in an comprehensible and structured form

Practical Course Sociotechnical Information Systems Development (Master)Practical course (P)2512401, WS 20/21, 3 SWS, Language: German/English, Open in study portalOnline

Content

The aim of this course is to provide a practical introduction into developing socio-technical information systems, such as web platforms, mobile apps, or desktop applications. Course participants will create (individually or in groups) software solutions for specific problems from various practical domains. The course tasks comprise requirements assessment, system design, and software implementation. Furthermore, course participants will gain insights into software quality assurance methods and software documentation.

Learning objectives:

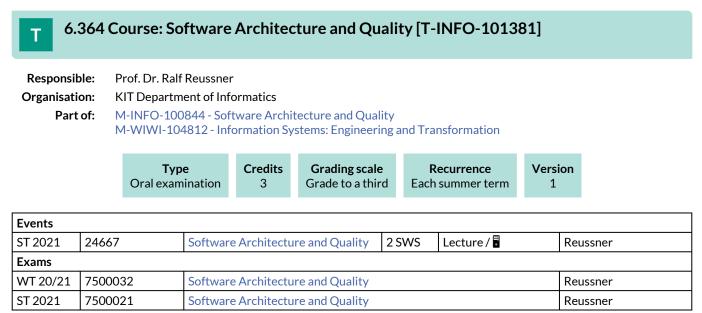
- Independent and self-organized realization of a software development project
- Evaluation and selection of suitable development tools and methods
- Application of modern software development methods
- Planning and execution of different development tasks: requirements assessment, system design, implementation, and quality assurance
- Project documentation
- Presentation of project results in an comprehensible and structured form

Advanced Lab Development of Sociotechnical Information Systems (Bachelor) Practical course (P) 2512400, SS 2021, 3 SWS, Language: German/English, Open in study portal Online

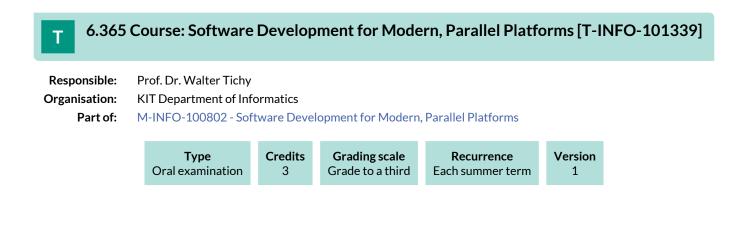
Content

The aim of the lab is to get to know the development of socio-technical information systems in different application areas. In the event framework, you should develop a suitable solution strategy for your problem alone or in group work, collect requirements, and implement a software artifact based on it (for example, web platform, mobile apps, desktop application). Another focus of the lab is on the subsequent quality assurance and documentation of the implemented software artifact.

Registration information will be announced on the course page.


Development of Sociotechnical Information Systems (Master) 2512401, SS 2021, 3 SWS, Language: German/English, Open in study portal

Practical course (P) Online


Content

The aim of the lab is to get to know the development of socio-technical information systems in different application areas. In the event framework, you should develop a suitable solution strategy for your problem alone or in group work, collect requirements, and implement a software artifact based on it (for example, web platform, mobile apps, desktop application). Another focus of the lab is on the subsequent quality assurance and documentation of the implemented software artifact.

Registration information will be announced on the course page.

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Т 6.3	366 (Course: So	oftware E	ngineerin	ng II [T-INF	0-10	1370]		
Responsib Organisatio Part	on:	Prof. DrIng. Prof. Dr. Ralf Prof. Dr. Wal KIT Departm M-INFO-100	Reussner ter Tichy ent of Inforr	natics	ring II				
		Ty Written ex		Credits 6	Grading sc Grade to a t		Recurrence Each winter term	Versio 1	on
Events					-				on
Events WT 20/21	2407	Written ex	amination		Grade to a t		Each winter term	1	Reussner
	2407	Written ex	amination	6	Grade to a t	hird	Each winter term	1	
WT 20/21	2407	Written ex	amination Software E	6	Grade to a t	hird	Each winter term	1 F	

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

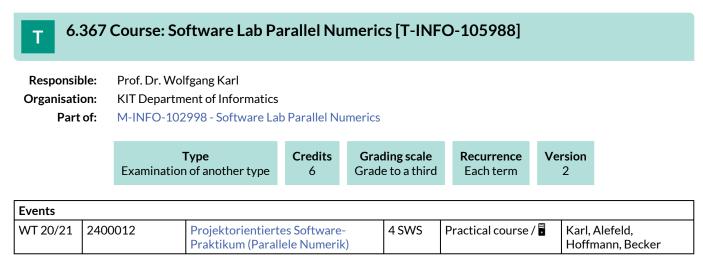
7500235

Below you will find excerpts from events related to this course:

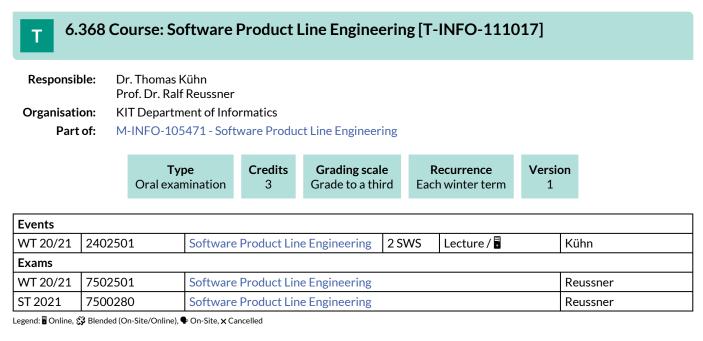
ST 2021

Software Engineering II

24076, WS 20/21, 4 SWS, Language: German, Open in study portal


Software Engineering II

Lecture (V) Online


Reussner

Literature

Craig Larman, Applying UML and Patterns, 3rd edition, Prentice Hall, 2004. Weitere Literaturhinweise werden in der Vorlesung gegeben.

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Software Product Line Engineering

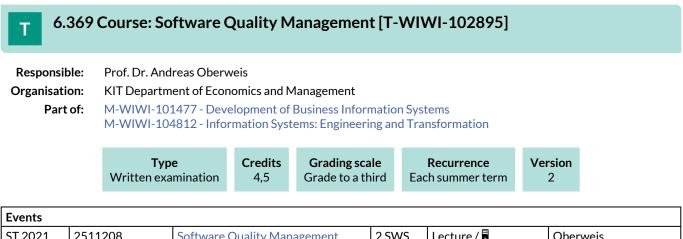
2402501, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

This module teaches students the methods and techniques for the development and maintenance of multi-variant software systems by means of software product line engineering. The lecture provides an overview of the basic goals, methods, concepts and techniques for the development and maintenance of software product lines.

Organizational issues


https://sdqweb.ipd.kit.edu/wiki/Vorlesung_Software-Produktlinien-Entwicklung_WS_2020/21

Literature

Software Product Line Engineering: Foundations, Principles and Techniques von Klaus Pohl, Günter Böckle, Frank J. van der Linden, Springer 2011.

Feature-Oriented Software Product Lines: Concepts and Implementation von Sven Apel, Don Batory, Christian Kästner, Springer 2013.

Mastering Software Variability with FeatureIDE von Jens Meinicke, Thomas Thüm, Reimar Schröter, Springer, 2017.

51 2021	2511200	Software Quality Management	2 3 8 3		Obel wels		
ST 2021	2511209	Übungen zu Software- Qualitätsmanagement	1 SWS	Practice / 🖥	Oberweis, Frister		
Exams	Exams						
WT 20/217900027Software Quality Management (Registration until 08 February 2021)					Oberweis		
ST 2021	7900031	Software Quality Management (Registration until 12 July 2021)			Oberweis		

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Prerequisites

None

Below you will find excerpts from events related to this course:

Software Quality Management

2511208, SS 2021, 2 SWS, Language: German, Open in study portal	Online
---	--------

Content

This lecture imparts fundamentals of active software quality management (quality planning, quality testing, quality control, quality assurance) and illustrates them with concrete examples, as currently applied in industrial software development. Keywords of the lecture content are: software and software quality, process models, software process quality, ISO 9000-3, CMM(I), BOOTSTRAP, SPICE, software tests.

Learning objectives:

Students

- explain the relevant quality models,
- apply methods to evaluate the software quality and evaluate the results,
- know the mail models of sofware certification, compare and evaluate these models,
- write scientific theses in the area of software quality management and find own solutions for given problems.

Recommendations:

Programming knowledge in Java and basic knowledge of computer science are expected.

Workload:

- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h

Lecture (V)

Literature

- Helmut Balzert: Lehrbuch der Software-Technik. Spektrum-Verlag 2008
- Peter Liggesmeyer: Software-Qualität, Testen, Analysieren und Verifizieren von Software. Spektrum Akademischer Verlag 2002
- Mauro Pezzè, Michal Young: Software testen und analysieren. Oldenbourg Verlag 2009

Weitere Literatur wird in der Vorlesung bekanntgegeben.

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.371 Course: Spatial Economics [T-WIWI-103107] Т Prof. Dr. Ingrid Ott **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-101485 - Transport Infrastructure Policy and Regional Development M-WIWI-101496 - Growth and Agglomeration Credits **Grading scale** Recurrence Version Туре Grade to a third Written examination 4,5 Each winter term 1 **Events** Ott WT 20/21 2561260 **Spatial Economics** 2 SWS Lecture / WT 20/21 2561261 1 SWS Practice / Ott, Bälz Exams

 Exams
 Ott

 WT 20/21
 7900075
 Spatial Economics
 Ott

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 60minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Recommendation

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses "Economics I" [2600012], and "Economics II" [2600014]. In addition, an interest in quantitative-mathematical modeling is required. The attendance of the course "Introduction to economic policy" [2560280] is recommended.

Annotation

Due to the research semester of Prof. Dr. Ingrid Ott, the course is not offered in the winter term 2018/19.

Below you will find excerpts from events related to this course:

Spatial Economics 2561260, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

The course covers the following topics:

- Geography, trade and development
- Geography and economic theory
- Core models of economic geography and empirical evidence
- Agglomeration, home market effect, and spatial wages
- Applications and extensions

Learning objectives:

The student

- analyses how spatial distribution of economic activity is determined.
- uses quantitative methods within the context of economic models.
- has basic knowledge of formal-analytic methods.
- understands the link between economic theory and its empirical applications.
- understands to what extent concentration processes result from agglomeration and dispersion forces.
- is able to determine theory based policy recommendations.

Recommendations:

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. An interest in mathematical modeling is advantageous.

Workload:

The total workload for this course is approximately 135 hours.

- Classes: ca. 30 h
- Self-study: ca. 45 h
- Exam and exam preparation: ca. 60 h

Assessment:

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Literature

Steven Brakman, Harry Garretsen, Charles van Marrewijk (2009): The New Introduction to Geographical Economics, 2nd ed, Cambridge University Press.

Weitere Literatur wird in der Vorlesung bekanntgegeben. (Further literature will be announced in the lecture.)

6.372 Course: Special Topics in Information Systems [T-WIWI-109940] Prof. Dr. Christof Weinhardt **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-101410 - Business & Service Engineering M-WIWI-101506 - Service Analytics M-WIWI-103720 - eEnergy: Markets, Services and Systems Credits **Grading scale** Recurrence Version Type Examination of another type Grade to a third 4,5 Each term 2 Exams WT 20/21 7900263 **Special Topics in Information Systems** Weinhardt

Competence Certificate

The assessment of this course is according to \$4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class.

Please take into account that, beside the written documentation, also a practical component (such as a survey or an implementation of an application) is part of the course. Please examine the course description for the particular tasks.

The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class).

Prerequisites

see below

Recommendation

None

Annotation

All the practical seminars offered at the chair of Prof. Dr. Weinhardt can be chosen in the Special Topics in Information Systems course. The current topics of the practical seminars are available at the following homepage: www.iism.kit.edu/im/lehre.

The Special Topics Information Systems is equivalent to the practical seminar, as it was only offered for the major in "Information Systems" so far. With this course students majoring in "Industrial Engineering and Management" and "Economics Engineering" also have the chance of getting practical experience and enhance their scientific capabilities.

The Special Topics Information Systems can be chosen instead of a regular lecture (see module description). Please take into account, that this course can only be accounted once per module.

6.373 Course: Statistical Modeling of Generalized Regression Models [T-WIWI-103065]

Responsible:	apl. Prof. Dr. Wolf-Dieter Heller	
Organisation:	KIT Department of Economics and Management	
Part of:	M-WIWI-101638 - Econometrics and Statistics I M-WIWI-101639 - Econometrics and Statistics II M-WIWI-105414 - Statistics and Econometrics II	

	Туре	Credits	Grading scale	Recurrence	Version	
١	Written examination	4,5	Grade to a third	Each winter term	1	

Events						
WT 20/21	2521350	Statistical Modeling of Generalized Regression Models	2 SWS	Lecture / 🗣	Heller	
Exams						
WT 20/21	Heller					
l agandu 🗐 Onlina 🦸	Blandad (On-Sita/Onlina)	On Site M Cancelled				

Legend: Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation.

Prerequisites None

Recommendation

Knowledge of the contents covered by the course "Economics III: Introduction in Econometrics" [2520016]

Below you will find excerpts from events related to this course:

V	Statistical Modeling of Generalized Regression Models	Lecture (V)
V	2521350, WS 20/21, 2 SWS, Open in study portal	On-Site

Content Learning objectives:

The student has profound knowledge of generalized regression models.

Requirements:

Knowledge of the contents covered by the course Economics III: Introduction in Econometrics" [2520016].

Workload:

Total workload for 4.5 CP: approx. 135 hours

Attendance: 30 hours

Preparation and follow-up: 65 hours

6.374 Course: Stochastic Calculus and Finance [T-WIWI-103129] **Responsible:** Dr. Mher Safarian KIT Department of Economics and Management **Organisation:** Part of: M-WIWI-101639 - Econometrics and Statistics II Type Credits **Grading scale** Recurrence Version Written examination 4,5 Grade to a third Each winter term 1 **Events** WT 20/21 2521331 Lecture / 🕄 Stochastic Calculus and Finance 2 SWS Safarian Exams WT 20/21 7900225 Stochastic Calculus and Finance Safarian

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment of this course consists of a written examination (§4(2), 1 SPOs, 180 min.).

Prerequisites None

Annotation

For more information see http://statistik.econ.kit.edu/

Below you will find excerpts from events related to this course:

Stochastic Calculus and Finance

2521331, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Blended (On-Site/Online)

Content

Learning objectives:

After successful completion of the course students will be familiar with many common methods of pricing and portfolio models in finance. Emphasis we be put on both finance and the theory behind it.

Content:

The course will provide rigorous yet focused training in stochastic calculus and mathematical finance. Topics to be covered:

- 1. Stochastic Calculus: Stochastic Processes, Brownian Motion and Martingales, Entropy, Stopping Times, Local martingales, Doob-Meyer Decomposition, Quadratic Variation, Stochastic Integration, Ito Formula, Girsanov Theorem, Jump-diffusion Processes, Stable and Levy processes.
- 2. Mathematical Finance: Pricing Models, The Black-Scholes Model, State prices and Equivalent Martingale Measure, Complete Markets and Redundant Security Prices, Arbitrage Pricing with Dividends, Term-Structure Models (One Factor Models, Cox-Ingersoll-Ross Model, Affine Models), Term-Structure Derivatives and Hedging, Mortgage-Backed Securities, Derivative Assets (Forward Prices, Future Contracts, American Options, Look-back Options), Incomplete Markets, Markets with Transaction Costs, Optimal Portfolio and Consumption Choice (Stochastic Control and Merton continuous time optimization problem, CAPM), Equilibrium models, Numerical Methods.

Workload:

Total workload for 4.5 CP: approx. 135 hours Attendance: 30 hours Preparation and follow-up: 65 hours

Organizational issues

Blockveranstaltung, Termine werden über Ilias bekannt gegeben

Literature

- Dynamic Asset Pricing Theory, Third Edition by D. Duffie, Princeton University Press, 1996
- Stochastic Calculus for Finance II: Continuous-Time Models by S. E. Shreve, Springer, 2003
- Stochastic Finance: An Introduction in Discrete Time by H. Föllmer, A. Schied, de Gruyter, 2011
- Methods of Mathematical Finance by I. Karatzas, S. E. Shreve, Springer, 1998
- Markets with Transaction Costs by Yu. Kabanov, M. Safarian, Springer, 2010
- Introduction to Stochastic Calculus Applied to Finance by D.Lamberton, B. Lapeyre, Chapman&Hall, 1996

6.375 Course: Stochastic Information Processing [T-INFO-101366] **Responsible:** Prof. Dr.-Ing. Uwe Hanebeck **Organisation: KIT** Department of Informatics M-INFO-100829 - Stochastic Information Processing Part of: Type Credits **Grading scale** Recurrence Version Oral examination 6 Grade to a third Each winter term 1 **Events** WT 20/21 24113 3 SWS Lecture / 🕄 **Stochastic Information Processing** Hanebeck, Frisch Exams WT 20/21 7500031 Stochastic Information Processing Hanebeck WT 20/21 7500312 **Stochastic Information Processing** Hanebeck ST 2021 7500010 Stochastic Information Processing Hanebeck, Noack

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Stochastic Information Processing

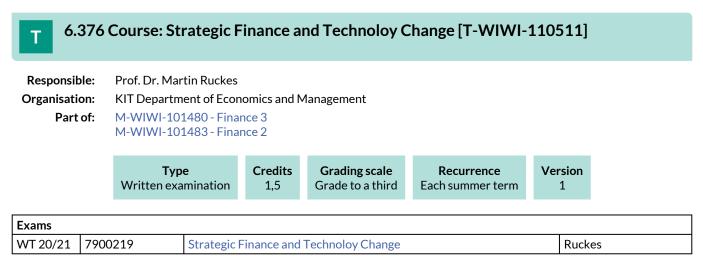
24113, WS 20/21, 3 SWS, Language: German, Open in study portal

Lecture (V) Blended (On-Site/Online)

Content

In order to handle complex dynamic systems (e.g., in robotics), an in-step estimation of the system's internal state (e.g., position and orientation of the actuator) is required. Such an estimation is ideally based on the system model (e.g., a discretized differential equation describing the system dynamics) and the measurement model (e.g., a nonlinear function that maps the state space to a measurement subspace). Both system and measurement model are uncertain (e.g., include additive or multiplicative noise).

For continuous state spaces, an exact calculation of the probability densities is only possible in a few special cases. In practice, general nonlinear systems are often traced back to these special cases by simplifying assumptions. One extreme is linearization with subsequent application of linear estimation theory. However, this often leads to unsatisfactory results and requires additional heuristic measures. At the other extreme are numerical approximation methods, which only evaluate the desired distribution densities at discrete points in the state space. Although the working principle of these procedures is usually quite simple, a practical implementation often turns out to be difficult and especially for higher-dimensional systems it is computationally complex.


As a middle ground, analytical nonlinear estimation methods would therefore often be desirable. In this lecture the main difficulties in the development of such estimation methods are presented and corresponding solution modules are presented. Based on these building blocks, some analytical estimation methods are discussed in detail as examples, which are very suitable for practical implementation and offer a good compromise between computing effort and performance. Useful applications of these estimation methods are also discussed. Both known methods and the results of current research are presented.

Organizational issues

Der Prüfungstermin ist per E-Mail (gambichler@kit.edu) zu vereinbaren.

Literature Weiterführende Literatur

Skript zur Vorlesung

Competence Certificate

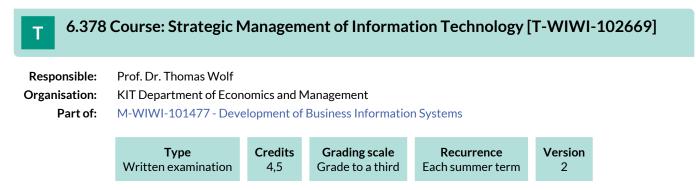
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation. The exam is offered each semester. If there are only a small number of participants registered for the exam, we reserve the right to hold an oral examination instead of a written one.

Prerequisites

None

Recommendation

Attending the lecture "Financial Management" is strongly recommended.


6.377 Course: Strategic Foresight China [T-WIWI-110986] Т Prof. Dr. Marion Weissenberger-Eibl **Responsible:** Organisation: KIT Department of Economics and Management Part of: M-WIWI-101507 - Innovation Management M-WIWI-101507 - Innovation Management Credits Grading scale Recurrence Version Type Grade to a third Examination of another type 3 Each winter term 1 **Events** Seminar / WT 20/21 2545110 Strategische Vorausschau am 2 SWS Heine **Praxisbeispiel China** Exams WT 20/21 7900307 Weissenberger-Eibl Strategic Foresight China Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Alternative exam assessment.

Recommendation

Prior attendance of the course Innovation Management [2545015] is recommended.

Competence Certificate

Please note that the exam for first writers will be offered for the last time in winter semester 2019/2020. A last examination possibility exists in the summer semester 2020 (only for repeaters).

The assessment of this course is a written (60 min.) or (if necessary) oral examination according (30 min.) to §4(2) of the examination regulation.

Prerequisites

None

6.379 Course: Strategy and Management Theory: Developments and "Classics" [T-WIWI-106190]

Responsible: Prof. Dr. Hagen Lindstädt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-103119 - Advanced Topics in Strategy and Management

Events					
ST 2021	2577921	Strategy and Management Theory: Developments and "Classics" (Master)	2 SWS	Seminar / 🖥	Lindstädt
Exams	•			-	
ST 2021	Lindstädt				
ogondu 🗏 Onling	Rended (On Site (On	line) 🗣 On-Site 🗙 Cancelled			·

Legend: Online, 🔂 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The control of success according to § 4(2), 3 SPO takes place by writing a scientific work and a presentation of the results of the work in the context of a conclusion meeting. Details on the design of the performance review will be announced during the lecture.

Prerequisites None

Recommendation

Basic knowledge as conveyed in the bachelor module "Strategy and Organization" is recommended.

Annotation

This course is admission restricted. If you were already admitted to another course in the module "Advanced Topics in Strategy and Management" the participation at this course will be guaranteed.

The course is planned to be held for the first time in the winter term 2017/18.

Below you will find excerpts from events related to this course:

Strategy and Management Theory: Developments and "Classics" (Master) Seminar (S) Online 2577921, SS 2021, 2 SWS, Language: German, Open in study portal

Content

In this lecture, students discuss and evaluate models in the field of strategic management with a focus on applicability and theory based limitations. Critical examination of current research results will be a substantial part of this course.

Learning Objectives:

Students

- are able to explain and evaluate theoretical approaches and models in the field of strategic management and can illustrate them by tangible examples
- learn to express their position in structured discussions

Recommendations:

Basic knowledge as conveyed in the bachelor module "Strategy and Organization" is recommended.

Workload:

The total workload for this course is approximately 90 hours.

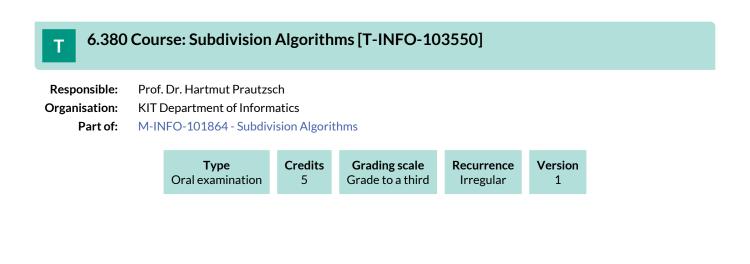
Lecture: 15 hours

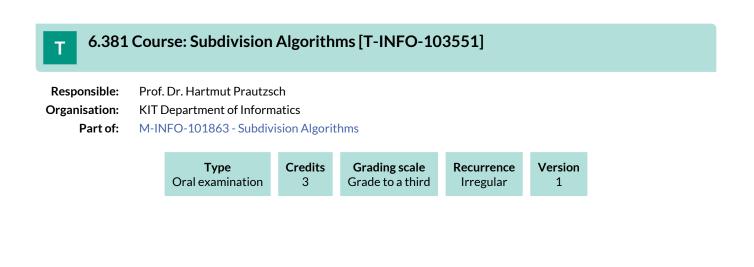
Preparation of lecture: 75 hours

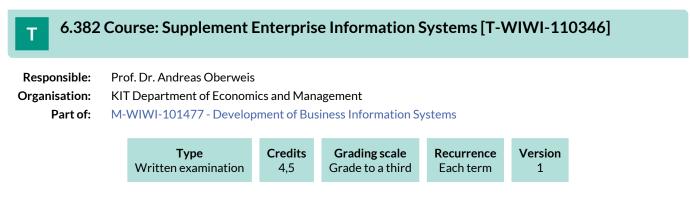
Exam preparation: n/a

Assessment:

The control of success according to § 4(2), 3 SPO takes place by writing a scientific work and a presentation of the results of the work in the context of a final meeting. Details on the design of the success control will be announced during the lecture.


Note:


This course is admission restricted. If you were already admitted to another course in the module "Advanced Topics in Strategy and Management" the participation at this course will be guaranteed. Further information on the application process can be found on the IBU website.


The examinations are offered at least every second semester, so that the entire module can be completed in two semesters.

Organizational issues

siehe Homepage

Competence Certificate

The assessment of this course is a written examination (60 min.) or (if necessary) oral examination (30 min.) according to §4(2) of the examination regulation.

Prerequisites

None

6.383 Course: Supply Chain Management in the Automotive Industry [T-WIWI-102828]

Responsible:	Tilman Heupel Hendrik Lang				
Organisation:	KIT Department of Econo	omics and M	anagement		
Part of:	M-WIWI-101412 - Indus M-WIWI-101471 - Indus				
	Type Written examination	Credits 3,5	Grading scale Grade to a third	Recurrence Each winter term	Version 1

Events					
WT 20/21	2581957	Supply Chain Management in the automotive industry	2 SWS	Lecture / 🖥	Lang, Heupel
Exams					
WT 20/21 7981957 Supply Chain Management in the Automotive Industry					Schultmann

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (examination of another type, following §4(2), 3 of the examination regulation).

Prerequisites

None

Recommendation None

Below you will find excerpts from events related to this course:

	Supply Chain Management in the automotive industry	Lecture (V)
V	2581957, WS 20/21, 2 SWS, Language: German, Open in study portal	Online

Content

- Automotive industry significance
- The automotive supply chain
- Adding value structures of the automotive supply chain and mastering of the production systems as factors of success in the SCM
- Strategic procurement logistics
- Risk management
- Quality engineering and management in the automotive supply chain
- Cost engineering and management in the automotive supply chain
- Purchasing (Supplier selection, contract management)
- Performance measurement of the supply chain
- Organization

Literature

Wird in der Veranstaltung bekannt gegeben.

6.384 Course: Supply Chain Management with Advanced Planning Systems [T-WIWI-102763]

Responsible:	Claus J. Bosch Dr. Mathias Göbelt				
Organisation:	KIT Department of Econ	nomics and N	A anagement		
Part of:	M-WIWI-101412 - Indu M-WIWI-101471 - Indu				
	Type Written examination	Credits	Grading scale Grade to a third	Recurrence Fach summer term	Version

Events							
ST 2021	2581961	Supply Chain Management with Advanced Planning Systems	2 SWS	Lecture / 🖥	Göbelt, Bosch		
Exams							
WT 20/21 7981961 Supply Chain Management with Advanced Planning Systems Schultmann							

Legend: 🖥 Online, 🚱 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None

Recommendation None

Below you will find excerpts from events related to this course:

\mathbf{V}	Supply Chain Management with Advanced Planning Systems	Lecture (V)
v	2581961, SS 2021, 2 SWS, Language: English, Open in study portal	Online

Content

This lecture deals with supply chain management from a practitioner's perspective with a special emphasis Advanced Planning Systems (APS) and the planning domain. The software solution SAP SCM, one of the most widely used Advanced Planning Systems, is used as an example to show functionality and application of an APS in practice.

First, the term supply chain management is defined and its scope is determined. Methods to analyze supply chains as well as indicators to measure supply chains are derived. Second, the structure of an APS (advanced planning system) is discussed in a generic way. Later in the lecture, the software solution SAP SCM is mapped to this generic structure. The individual planning tasks and software modules (demand planning, supply network planning / sales & operations planning, production planning / detailed scheduling, deployment, transportation planning, global available-to-promise) are presented by discussing the relevant business processes, providing academic background, describing typical planning processes and showing the user interface and user-related processes in the software solution. At the end of the lecture, implementation methodologies and project management approaches for SAP SCM are covered.

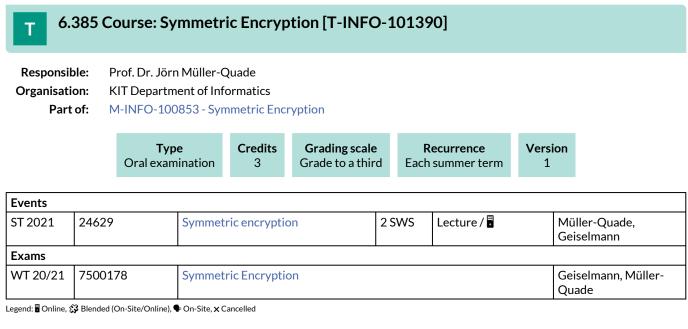
Contents

1. Introduction to Supply Chain Management

- 1.1. Supply Chain Management Fundamentals
- 1.2. Supply Chain Management Analytics

2. Structure of Advanced Planning Systems

3. SAP SCM


- 3.1. Introduction / SCM Solution Map
- 3.2. Demand Planning
- 3.3. Supply Network Planning / Sales & Operations Planning
- 3.4. Production Planning and Detailed Scheduling
- 3.5. Deployment
- 3.6. Transportation Planning / Global Available to Promise
- 3.7. Cloud-based Supply Chain Planning

4. SAP SCM in Practice

- 4.1. Project Management and Implementation
- 4.2. SAP Implementation Methodology

Literature

will be announced in the course

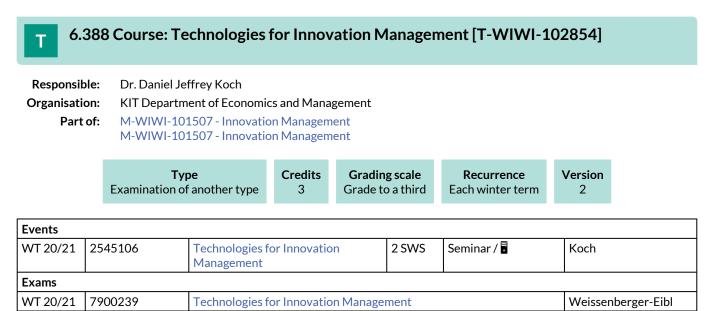
Competence Certificate

Es wird empfohlen, das Modul Sicherheit zu belegen.

Below you will find excerpts from events related to this course:

Symmetric encryption

24629, SS 2021, 2 SWS, Language: German, Open in study portal


Information Systems M.Sc. Module Handbook as of 09/04/2021 Lecture (V) Online

Т 6.	386	Course: Ta	x Law I [⁻	T-INFO-1	.01315]					
Responsible: Organisation: Part of:		Detlef Dietrich KIT Department of Informatics M-INFO-101216 - Private Business Law								
		Ty Written ex		Credits 3	Grading sca Grade to a th		Recurrence Each winter term	Vers 1		
Events										
WT 20/21 24168			Tax Law I			2 SWS Lecture /			Dietrich	
Exams										
WT 20/21	7500	066	Tax Law I						Dreier, Matz	

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Т 6.	387	Course: Ta	ax Law II	[T-INFO	-101314]					
Responsible: Organisation: Part of:		Detlef Dietrich KIT Department of Informatics M-INFO-101216 - Private Business Law								
		Tyr Written exa		Credits 3	Grading scale Grade to a thin		Recurrence ach summer term	Version 1		
Events										
ST 2021 24646 Tax			Tax Law II			2 SWS Lecture /		Dietrich		
Exams										
WT 20/21 7500067 Tax Law II Dreier, Matz								Drei	ier, Matz	

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Presentation and individual paper (ca. 15 pages) as alternative exam assessment.

Prerequisites

None

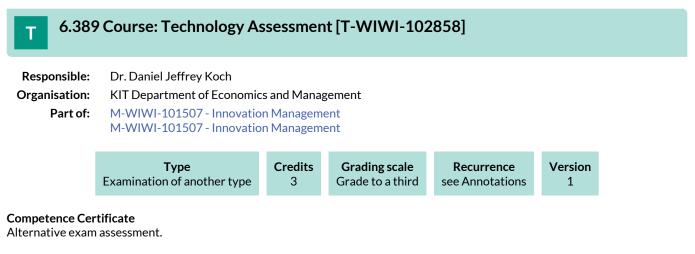
Recommendation

Prior attendance of the course Innovationsmanagement: Konzepte, Strategien und Methoden is recommended.

Below you will find excerpts from events related to this course:

Technologies for Innovation Management

2545106, WS 20/21, 2 SWS, Language: German, Open in study portal

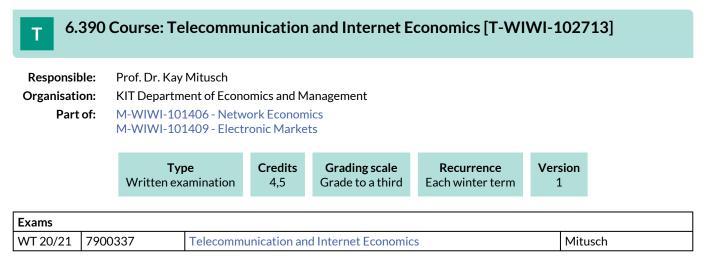

Content

The seminar "Technologies for Innovation Management" will focus on the early phase or fuzzy front end in innovation management. Technologies can be of great importance here, above all in the supply of information. In globally distributed R & D organizations, it is necessary to collect as much information as possible on new technological developments in the early phase of the innovation process. Information and communication technologies can be supported.

Literature

Werden in der ersten Veranstaltung bekannt gegeben.

Seminar (S) Online



Prerequisites None

Recommendation

Prior attendance of the course Innovation Management is recommended.

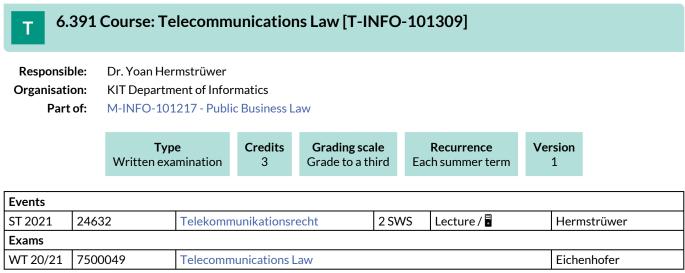
Annotation See German version.

Competence Certificate

Result of success is made by a 60 minutes written examination during the semester break (according to §4(2), 1 ERSC). Examination is offered every semester and can be retried at any regular examination date.

Prerequisites

None


Recommendation

Basic knowledge and skills of microeconomics from undergraduate studies (bachelor's degree) are expected.

Particularly helpful but not necessary: Industrial Economics. Prior attendance of the lecture "Competition in Networks" [26240] or "Industrial Organisation" is helpful in any case but not considered a formal precondition. The english taught course "Communications Economics" is complementary and recommendet for anyone interested in the sector.

Annotation

Due to the research semester of Prof. Mitusch the course for partial performance will not be offered in the winter semester 2020/2021. An examination will be offered in each semester.

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Т 6.	392	Course: To	elematics	[T-INFO	-101338]			
Responsible: Organisation: Part of:		KIT Departr	artina Zitterb nent of Inforn 0801 - Telem	matics				
		-	/pe xamination	Credits 6	Grading scale Grade to a third	Recurrence Each winter term	Version 1	
Events								
WT 20/21	241	28	Telematics	;	3 SW	/S Lecture / 🖥		r, Friebe, ding, Hock, ·bart
Exams	•				•	·		
WT 20/21	750	0166	Telematics	5		Zitter	·bart	
		0115	Telematics				Zitter	

Below you will find excerpts from events related to this course:

Telematics

24128, WS 20/21, 3 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

The lecture covers (i.a.) protocols, architectures, as well as methods and algorithms, for routing and establishing reliable end-toend connections in the Internet. In addition to various methods for media access control in local area networks, the lecture also covers other communication systems, e.g. circuit-switched systems such as ISDN. Participants should also have understood the possibilities for managing and administering networks.

Familiary with the contents of the lecture Einführung in Rechnernetze or comparable lectures is assumed.

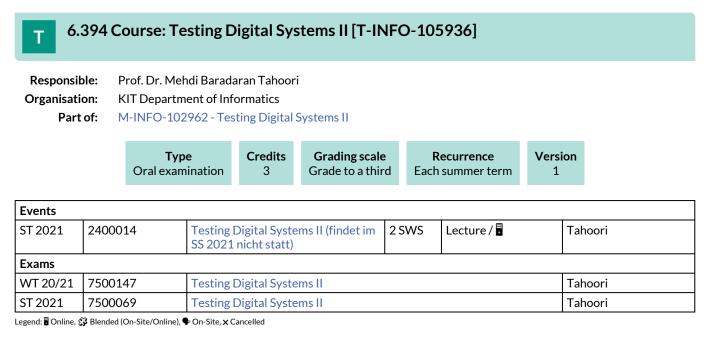
Learning Objectives

After attending this lecture, the students will

- have a profound understanding of protocols, architectures, as well as procedures and algorithms used for routing and for establishing reliable end-to-end connections in the Internet
- have a profound understanding of different media access control procedures in local networks and other communication systems like circuit-switched ISDN
- have a profound understanding of the problems that arise in large scale dynamic communication systems and are familiar with mechanism to deal with these problems
- be familiar with current developments such as SDN and data center networking
- be familiar with different aspects and possibilities for network management and administration

Students have a profound understanding of the basic protocol mechanisms that are necessary to establish reliable end-to-end communication. Students have detailed knowledge about the congestion and flow control mechanisms used in TCP and can discuss fairness issue in the context of multiple parallel transport streams. Students can analytically determine the performance of transport protocols and know techniques for dealing with specific constraints in the context of TCP, e.g., high data rates and low latencies. Students are familiar with current topics such as the problem of middle boxes on the Internet, the usage of TCP in data centers or multipath TCP. Students are also familiar with practical aspects of modern transport protocols and know practical ways to overcome heterogeneity in the development of distributed applications.

Students know the functions of (Internet) routing and routers and can explain and apply common routing algorithms. Students are familiar with routing architectures and different alternatives for buffer placement as well as their advantages and disadvantages. Students understand the classification into interior and exterior gateway protocols and have in-depth knowledge of the functionality and features of common protocols such as RIP, OSPF, and BGP. Students are also familiar with current topics such as label switching, IPv6 and SDN.


Students know the function of media access control and are able to classify and analytically evaluate different media access control mechanisms. Students have an in-depth knowledge of Ethernet and various Ethernet variants and characteristics, which especially includes current developments such as real-time Ethernet and data center Ethernet. Students can explain and apply the Spanning Tree Protocol.

Students know the architecture of ISDN and can reproduce the peculiarities of setting up the ISDN subscriber line. Students are familiar with the technical features of DSL.

Literature

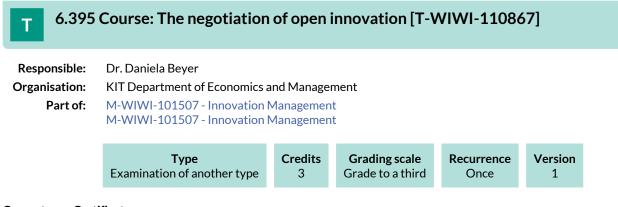
S. Keshav. An Engineering Approach to Computer Networking. Addison-Wesley, 1997 J.F. Kurose, K.W. Ross. Computer Networking: A Top-Down Approach Featuring the Internet. 4rd Edition, Addison-Wesley, 2007 W. Stallings. Data and Computer Communications. 8th Edition, Prentice Hall, 2006 Weiterführende Literatur •D. Bertsekas, R. Gallager. Data Networks. 2nd Edition, Prentice-Hall, 1991 •F. Halsall. Data Communications, Computer Networks and Open Systems. 4th Edition, Addison-Wesley Publishing Company, 1996 •W. Haaß. Handbuch der Kommunikationsnetze. Springer, 1997 •A.S. Tanenbaum. Computer-Networks. 4th Edition, Prentice-Hall, 2004 •Internet-Standards •Artikel in Fachzeitschriften

6.393 Course: Testing Digital Systems I [T-INFO-101388] Т **Responsible:** Prof. Dr. Mehdi Baradaran Tahoori Organisation: KIT Department of Informatics M-INFO-100851 - Testing Digital Systems I Part of: Credits Grading scale Version Туре Recurrence Grade to a third Oral examination 3 Each summer term 1 Exams WT 20/21 7500039 **Testing Digital Systems I** Tahoori ST 2021 7500008 Testing Digital Systems I Tahoori


```
Below you will find excerpts from events related to this course:
```


Testing Digital Systems II (findet im SS 2021 nicht statt)

2400014, SS 2021, 2 SWS, Language: English, Open in study portal


Lecture (V) Online

Content

Testing of digital circuits plays a critical role during the design and manufacturing cycles. It also ensures the quality of parts shipped to the customers. Test generation and design for testability are integral parts of automated design flow of all electronic products. The objective of this course is to provide more advanced topics on testing of digital systems and complement the foundation covered in Testing Digital Systems I.

Topics include Functional and Structural Testing (design verification vectors, exhaustive test, pseudo-exhaustive test, pseudorandom testing), Essentials of Test Generation for Sequential Circuits (state-machine initialization, time-frame expansion method), Built-in Self Test (test economics of BIST, test pattern generation, output respone analysis, BIST architectures), Boundry Scan (Boundry scan architectures, BS test methodology), Delay Testing (path delay test, hazard-free, robust, and non-robust delay tests), transition faults, delay test schemes), Current-Based Testing (motivation, test vectores for IDDQ, variations of IDDQ), Memory Test (memory test algorithm, memory BIST, memory repair), and DFT for System-on-Chip.

The objective of this course is to provide more advanced topics on testing of digital systems and complement the foundation covered in Testing Digital Systems I.

Competence Certificate

Non exam assessment.

The following aspects are included in the evaluation:

- Exposé of the seminar paper (15%)
- Preparation of the methodology (15%) (interview guide, quantitative survey, etc.)
- informed participation and preparation of the simulation game (20%)
- written elaboration (50%).

Prerequisites

None

Recommendation

Prior attendance of the course Innovation Management [2545015] is recommended.

6.396 Course: Topics in Experimental Economics [T-WIWI-102863]

Responsible:	Prof. Dr. Johannes Philipp Reiß
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101505 - Experimental Economics

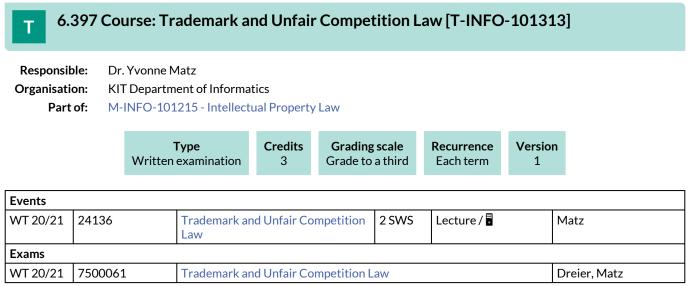
Туре	Credits	Grading scale	Recurrence	Version
Written examination	4,5	Grade to a third	Irregular	1

Exams	Exams						
WT 20/21	7900297	Topics in Experimental Economics	Reiß				
WT 20/21	7900362	Topics in Experimental Economics	Reiß				

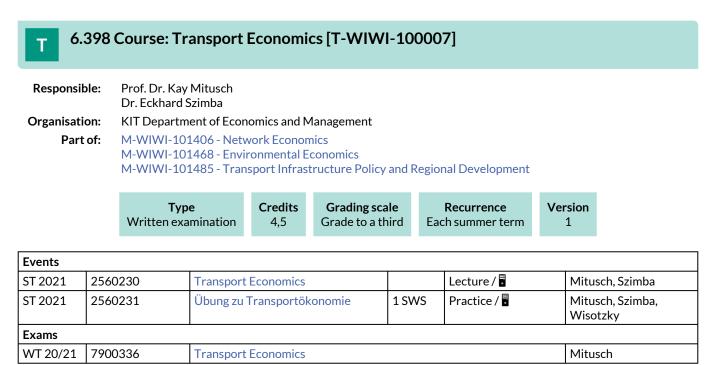
Competence Certificate

The assessment consists of a written exam (following §4(2), 1 of the examination regulation).

Prerequisites


None

Recommendation


Basic knowledge of Experimental Economics is assumed. Therefore, it is strongly recommended to attend the course Experimental Economics beforehand.

Annotation

The course is offered in summer 2020 for the next time, not in summer 2018.

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Legend: 🖥 Online, 🞲 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The assessment is made by a 60 minutes written examination during the semester break (according to §4(2), 1 ERSC). Examination is offered every semester and can be retried at any regular examination date.

Below you will find excerpts from events related to this course:

Literature Literatur:

Aberle, G: Transportwirtschaft: einzelwirtschaftliche und gesamtwirtschaftliche Grundlagen München; Wien: Oldenbourg, 2003. Blauwens, G., De Baere, P. and Van der Voorde, E. (2006): Transport Economics.

Frerich, J; Müller, G: Europäische Verkehrspolitik, Landverkehrspolitik München; Wien: Oldenbourg, 2004.

Dasgupta, A, Pearce, D (1972): Cost-Benefit Analysis, MacMillan, London.

Europäische Kommission (2008): Guide to Cost Benefit Analysis of Investment Projects, online unter http://ec.europa.eu/ regional_policy/sources/Ben-Akiva, M., Meerseman, H., and Van de Voorde, E. (2008): Recent developments in transport modelling: Lessons for the freight sector.

Ortúzar, J. d. D. and Willumsen, L. (1990): Modelling Transport.

6.399 Course: Ubiquitous Computing [T-INFO-101326]

Responsible: Organisation: Part of:

Prof. Dr.-Ing. Michael Beigl

KIT Department of Informatics M-INFO-100789 - Ubiquitous Computing M-WIWI-101458 - Ubiquitous Computing M-WIWI-104814 - Information Systems: Analytical and Interactive Systems

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	5	Grade to a third	Each winter term	1

Events	Events							
WT 20/21	24146	Ubiquitäre Informationstechnologien	2+1 SWS	Lecture / Practice (/	Beigl			
Exams								
WT 20/21	7500284_0125	Ubiquitous Computing			Beigl			
WT 20/21	7500284_0216	Ubiquitous Computing	Beigl					
WT 20/21	7500284_0401	Ubiquitous Computing			Beigl			
WT 20/21	7500284_0503	Ubiquitous Computing			Beigl			
WT 20/21	7500284_0506	Ubiquitous Computing			Beigl			
WT 20/21	7500284_1222	Ubiquitous Computing			Beigl			
ST 2021	7500122	Ubiquitous Computing	Beigl					

Legend: Doline, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.400 Course: Valuation [T-WIWI-102621]

Responsible: Prof. Dr. Martin Ruckes

Organisation: KIT Department of Economics and Management

M-WIWI-101480 - Finance 3 M-WIWI-101482 - Finance 1

M-WIWI-101483 - Finance 2

M-WIWI-101510 - Cross-Functional Management Accounting

Туре	Credits	Grading scale	Recurrence	Version
Written examination	4,5	Grade to a third	Each winter term	1

Events							
WT 20/21	2530212	Valuation	2 SWS	Lecture /	Ruckes		
WT 20/21	2530213	Übungen zu Valuation	1 SWS	Practice /	Ruckes, Luedecke		
Exams							
WT 20/21	7900057	Valuation			Ruckes		

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Part of:

See German version.

Prerequisites None

Recommendation

None

Below you will find excerpts from events related to this course:

Valuation

2530212, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

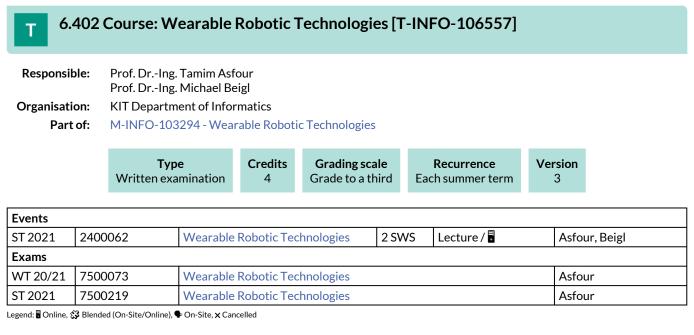
Firms prosper when they create value for their shareholders and stakeholders. This is achieved by investing in projects that yield higher returns than their according cost of capital. Students are told the basic tools for firm and project valuation as well as ways to implement these tools in order to enhance a firm's value and improve its investment decisions. Among other things, the course will deal with the valuation of firms and individual projects using discounted cash flow and relative valuation approaches and the valuation of flexibility deploying real options.

Topics:

- Projections of cash flows
- Estimation of the cost of capital
- Valuation of the firm
- Mergers and acquisitions
- Real options

Learning outcomes: Students are able to

- evaluate complex investment projects by taking a financial view,
- value firms,
- assess the advantageousness of potential merger and acquisitions.


Literature

Weiterführende Literatur

Titman/Martin (2013): Valuation - The Art and Science of Corporate Investment Decisions, 2nd. ed. Pearson International.

6.401 Course: Visualization [T-INFO-101275]									
Responsible:Prof. DrIng. Carsten DachsbacherOrganisation:KIT Department of InformaticsPart of:M-INFO-100738 - Visualization									
		Typ Oral exam		Credits 5	Grading scale Grade to a thir		Recurrence h summer term	Version 1	
Events									
WT 20/21	2418	33	Visualisa	ition		2 SWS	Lecture	Da	chsbacher
ST 2021 2400175 Visualisierung		2 SWS Lecture /			achsbacher, ochowiak				
Exams	-								
WT 20/21	VT 20/21 7500563 Visualization Dachsbacher						achsbacher		

Legend: 🖥 Online, 🕸 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Below you will find excerpts from events related to this course:

Wearable Robotic Technologies

2400062, SS 2021, 2 SWS, Language: German/English, Open in study portal

Lecture (V) Online

Content

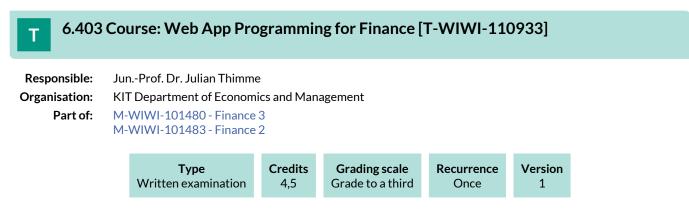
The lecture starts with an overview of wearable robot technologies (exoskeletons, prostheses and ortheses) and its potentials, followed by the basics of wearable robotics. In addition to different approaches to the design of wearable robots and their related actuator and sensor technology, the lecture focuses on modeling the neuromusculoskeletal system of the human body and the physical and cognitive human-robot interaction for tightly coupled hybrid human-robot systems. Examples of current research and various applications of lower, upper and full body exoskeletons as well as prostheses are presented.

Learning Objectives:

The students have received fundamental knowledge about wearable robotic technologies and understand the requirements for the design, the interface to the human body and the control of wearable robots. They are able to describe methods for modelling the human neuromusculoskeletal system, the mechatronic design, fabrication and composition of interfaces to the human body. The students understand the symbiotic human-machine interaction as a core topic of Anthropomatics and have knowledge of state of the art examples of exoskeletons, ortheses and protheses.

Organizational issues

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.


Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik, Sportwissenschaften

Voraussetzungen: Der Besuch der Vorlesung Mechano-Informatik in der Robotik wird vorausgesetzt

Arbeitsaufwand: 120h

Literature

Vorlesungsfolien und ausgewählte aktuelle Literaturangaben werden in der Vorlesung bekannt gegeben und als pdf unter http://www.humanoids.kit.edu verfügbar gemacht.

Competence Certificate

Non exam assessment according to § 4 paragraph 3 of the examination regulation. (Anmerkung: gilt nur für SPO 2015). The grade is made up as follows: 50% result of the project (R-code), 50% presentation of the project.

Prerequisites

None

Recommendation

The content of the bachelor course Investments is assumed to be known and necessary to follow the course.

6.404 Course: Web Applications and Service-Oriented Architectures (II) [T-INFO-101271]

Responsible: Prof. Dr. Sebastian Abeck

Organisation: Part of: KIT Department of Informatics M-INFO-100734 - Web Applications and Service-Oriented Architectures (II) M-WIWI-104812 - Information Systems: Engineering and Transformation

Туре	Credits	Grading scale	Recurrence	Version
Oral examination	4	Grade to a third	Each summer term	1

Events								
ST 2021	24677	Web Applications and Service oriented Architectures (II)	2 SWS	Lecture / 🖥	Abeck, Schneider			
Exams								
ST 2021	7500138	Web Applications and Service-oriented Architectures (II)			Abeck			

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

6.405 Course: Web Science [T-WIWI-103112]

Responsible:	Michael Färber
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101455 - Web Data Management
	M-WIWI-105368 - Web and Data Science

Type	Credits	Grading scale	Recurrence	Version
Written examination	4,5	Grade to a third	see Annotations	2

Exams						
WT 20/21	7900031	Web Science (Registration until 08 February 2021)	Sure-Vetter			
ST 2021	7900032	Web Science (Registration until 12 July 2021)	Färber			

Competence Certificate

The exam will be offered for the last time for first-time takers in the summer semester 2021. The last opportunity to take the exam (for repeaters only) is in the winter semester 2021/22.

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites None

Annotation

The lecture is no longer offered.

6.406 Course: Workshop Business Wargaming – Analyzing Strategic Interactions [T-WIWI-106189]

Responsible: Prof. Dr. Hagen Lindstädt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-103119 - Advanced Topics in Strategy and Management

Type	Credits	Grading scale	Recurrence	Version	
Examination of another type	3	Grade to a third	Irregular	1	

Events							
WT 20/21 2577922		Workshop Business Wargaming - Analyse strategischer Interaktionen (Master)		Seminar / 🖥	Lindstädt		
ST 2021	2577922	Workshop Business Wargaming - Analyse strategischer Interaktionen (Master)	2 SWS	Seminar / 🖥	Lindstädt		
Exams							
WT 20/21	7900172	Workshop Business Wargaming – An	Workshop Business Wargaming – Analyzing Strategic Interactions				
ST 2021	7900071	Workshop Business Wargaming - An	Workshop Business Wargaming – Analyzing Strategic Interactions				

Legend: 🖥 Online, 🕄 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

In this course, real conflict situations are simulated and analyzed using various methods from business wargaming. Details on the design of the performance review will be announced during the lecture.

Prerequisites

None

Recommendation

Basic knowledge as conveyed in the bachelor module "Strategy and Organization" is recommended.

Annotation

This course is admission restricted. If you were already admitted to another course in the module "Advanced Topics in Strategy and Management" the participation at this course will be guaranteed.

The course is planned to be held for the first time in the summer term 2018.

Below you will find excerpts from events related to this course:

Workshop Business Wargaming - Analyse strategischer Interaktionen (Master)Seminar (S)2577922, WS 20/21, 2 SWS, Language: German, Open in study portalOnline

Content

In this lecture, current economic trends will be discussed from a perspective of competition analysis and corporate strategies. Using appropriate frameworks, the students will be able to analyze collectively selected case studies and derive business strategies.

Learning Objectives:

Students

- are able to analyze business strategies and derive recommendations for the management
- learn to express their position through compelling reasoning in structured discussions

Recommendations:

Basic knowledge as conveyed in the bachelor module "Strategy and Organization" is recommended.

Workload:

The total workload for this course is approximately 90 hours.

Lecture: 15 hours

Preparation of lecture: 75 hours

Exam preparation: n/a

Assessment:

In this course, real conflict situations are simulated and analyzed using various methods from business wargaming. Details on the design of the success control will be announced during the lecture.

Note:

This course is admission restricted. If you werealready admitted to another course in the module "Advanced Topics in Strategy and Management" the participation at this course will be guaranteed. Further information on the application process can be found on the IBU website.

The examinations are offered at least every second semester, so that the entire module can be completed in two semesters.

Organizational issues

4 Blöcke mittwochs nachmittags

siehe Institutshomepage

Workshop Business Wargaming - Analyse strategischer Interaktionen (Master)Seminar (S)2577922, SS 2021, 2 SWS, Language: German, Open in study portalOnline

Content

In this lecture, current economic trends will be discussed from a perspective of competition analysis and corporate strategies. Using appropriate frameworks, the students will be able to analyze collectively selected case studies and derive business strategies.

Learning Objectives:

Students

- are able to analyze business strategies and derive recommendations for the management
- learn to express their position through compelling reasoning in structured discussions

Recommendations:

Basic knowledge as conveyed in the bachelor module "Strategy and Organization" is recommended.

Workload:

The total workload for this course is approximately 90 hours.

Lecture: 15 hours

Preparation of lecture: 75 hours

Exam preparation: n/a

Assessment:

In this course, real conflict situations are simulated and analyzed using various methods from business wargaming. Details on the design of the success control will be announced during the lecture.

Note:

This course is admission restricted. If you werealready admitted to another course in the module "Advanced Topics in Strategy and Management" the participation at this course will be guaranteed. Further information on the application process can be found on the IBU website.

The examinations are offered at least every second semester, so that the entire module can be completed in two semesters.

Organizational issues 4 Blöcke mittwochs nachmittags siehe Institutshomepage

6.407 Course: Workshop Current Topics in Strategy and Management [T-WIWI-106188]

Responsible: Prof. Dr. Hagen Lindstädt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-103119 - Advanced Topics in Strategy and Management

Events					
WT 20/21	2577923	Workshop aktuelle Themen Strategie und Management (Master)	2 SWS	Seminar /	Lindstädt
Exams					
WT 20/21	7900171	Workshop Current Topics in Strategy and Management			Lindstädt

Legend: 🖥 Online, 🕃 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

The evaluation of the performance takes place through the active participation in the discussion rounds; an appropriate preparation is expressed here and a clear understanding of the topic and framework becomes recognizable. Further details on the design of the performance review will be announced during the lecture.

Prerequisites

None

Recommendation

Basic knowledge as conveyed in the bachelor module "Strategy and Organization" is recommended.

Annotation

This course is admission restricted. If you were already admitted to another course in the module "Advanced Topics in Strategy and Management" the participation at this course will be guaranteed.

The course is planned to be held for the first time in the winter term 2017/18.

Below you will find excerpts from events related to this course:

Workshop aktuelle Themen Strategie und Management (Master)Seminar (S)2577923, WS 20/21, 2 SWS, Language: German, Open in study portalOnline

Content

In this lecture, students discuss and evaluate models in the field of strategic management with a focus on applicability and theory based limitations. Critical examination of current research results will be a substantial part of this course.

Learning Objectives:

Students

- are able to explain and evaluate theoretical approaches and models in the field of strategic management and can illustrate them by tangible examples
- learn to express their position in structured discussions

Recommendations:

Basic knowledge as conveyed in the bachelor module "Strategy and Organization" is recommended.

Workload:

The total workload for this course is approximately 90 hours.

Lecture: 15 hours

Preparation of lecture: 75 hours

Exam preparation: n/a

Assessment:

The assessment of performance is made through active participation in the discussion rounds; adequate preparation is expressed here and a clear understanding of the topic and framework becomes evident. Further details on the design of the success control will be announced during the lecture.

Note:

This course is admission restricted. If you werealready admitted to another course in the module "Advanced Topics in Strategy and Management" the participation at this course will be guaranteed. Further information on the application process can be found on the IBU website.

The examinations are offered at least every second semester, so that the entire module can be completed in two semesters.

Organizational issues

mittwochs tba